Technische Universität Berlin

FAKULTÄT V Verkehrs- und Maschinensysteme

Institut für Land- und Seeverkehr

Fachgebiet Schienenfahrzeuge

Prof. Dr.-Ing. Markus Hecht

Dipl.-Ing. Philipp Krause

TEL.: +49 (0)30 314 25388 FAX: +49 (0)30 314 22529 E-MAIL: p.krause@TU-Berlin.de

Bericht Abschlussbericht Arbeitsgruppe Drehgestell des

Technischen Innovationskreis Schienengüterverkehr (TIS)

Stand 13. März 2014

Inhaltsverzeichnis

١.	Abbildungsverzeichnis	3
1.	Zusammenfassung	
2.	Einleitung	5
3.	Vorgehensmodell	7
4.	Technische und betriebliche Anforderungen	8
4.		
	4.1.1 Anmerkungen	
4.	2 Technische Anforderungen an das Modul Drehgestellrahmen	13
	4.2.1 Anmerkungen	14
4.	3 Technische Anforderungen an das Modul Bremssystem	15
	4.3.1 Anmerkungen	15
4.	4 Technische Anforderungen an das Modul Radsätze	16
4.	5 Technische Anforderungen an das Modul Sensorik	20
	4.5.1 Anmerkungen	20
5.	Notwendige Zulassungsprozesse für ein TSI-Drehgestell in den Varianten A und B	21
6.	Betrachtung der Wirtschaftlichkeit/ Entwicklung von LCC- und Ertragswertmodellen	23
7.	Fördermöglichkeiten und Forschungslandschaft	25
8.	Literaturverzeichnis	26
ANH	ANG A	27
ANH	ANG B	28
Anh	ANG C	31
ANH	ANG D	32
ANH	ANG E	34
(1) Einzelförderprojekte für den Schienengüterverkehr	34
	a. In Deutschland	34
	b. In der EU	37
(2	2) Plattform-Projekte mit Bezug zum Schienengüterverkehr	39
	a. In Deutschland	39
	b. In der EU	40

I. Abbildungsverzeichnis

Abbildung 1: Struktur des TIS, [1]	5
Abbildung 2: Struktur der Arbeitsgruppe Drehgestelle	6
Abbildung 3: Vorgehensmodell zur Umsetzung	7
Abbildung 4: Grafische Verdeutlichung der zu untersuchenden LCC-Modellvarianten	23
Abbildung 5: Übersicht über Fördermöglichkeiten in Deutschland und EU	25
Abbildung 6: Folie zur Illustration definierter Innovationsvarianten aus TIS, [3]	27
Abbildung 7: Anforderungskatalog TIS-AG Sensorik	28
Abbildung 8: Morphologischer Kasten der TIS-AG Sensorik	29
Abbildung 9: Bewertung der TIS-AG Sensorik	30
Abbildung 10: Teilausschnitt "Innovative Drehgestelle" der Matrix für LCC-/Ertragswertmod	delle aus
TIS, ausgefüllt durch AG Drehgestell (Stand 27.03.2013), [4]	31

Bericht
Stand: 13. März 2014

Technische Universität Berlin Fachgebiet Schienenfahrzeuge

1. Zusammenfassung

Drehgestelle sind wesentliche Kostenfaktoren des Güterverkehrs. Diese ergeben sich nicht nur in der Beschaffung und Instandhaltung, sondern auch hinsichtlich der Zuverlässigkeit und der Betriebsabwicklung. Unter der Zielrichtung der Gesamtprozessoptimierung erarbeitete die AG Drehgestelle im Auftrag des Technischen Innovationskreis Güterverkehr (TIS) die technischen Anforderungen an das Drehgestell, die in dem folgenden Abschlussbericht festgehalten sind.

Im Fokus der Betrachtung standen zweiachsige Güterwagendrehgestelle. Dabei wurde generell eine maximale Achslast von 25 t zu Grunde gelegt. Da die Anforderungen sehr stark streuen und insbesondere die jährlichen Laufleistungen auch weiterhin sehr unterschiedlich sein werden, wurde ein modulares Konzept entwickelt, das möglichst viele Gleichteile ermöglicht und dennoch Flexibilität für den Bedarfsfall bietet.

Bei der Elaboration von konkreten Direktiven mit Hilfe dieses modularen Ansatzes wurde hinsichtlich zweier Grundvarianten A und B differenziert. Während in Variante A die Umsetzung der Basisinnovationen in der Bestandsflotte und bei Nachbauten ermöglicht wird, ist Variante B für neue Fahrzeuggenerationen mit dem vollen Innovationsnutzen aller fünf "L"-Felder vorgesehen.

Die einzelnen Module und deren Kombinationen sind bezüglich der Wirkungsziele des "5L"-Ansatzes zu hinterfragen und hinsichtlich der Nutzeffekte bei den Hauptakteuren des Schienengüterverkehrs zu bewerten.

Die damit entwickelten Anforderungen sollen zum einen dem Hersteller von Güterwagendrehgestellen als Arbeitsplattform für die weitergehende Umsetzung dienen und damit die Erstellung eines Anforderungsprofils für eine konkrete Fahrzeugbestellung erleichtern. Zum anderen stellen die Ergebnisse die Ausgangsbasis für eine weitergehende Diskussion mit der Querschnittsarbeitsgruppe LCC/Ertragswertmodelle des TIS dar.

Prof. Dr.-Ing. Markus Hecht

Dipl.-Ing. Philipp Krause

Dipl.-Ing Patrick Eschweiler

2. Einleitung

Im Entstehungsprozess des "Weissbuch Innovativer Eisenbahngüterwagen 2030", das erfolgreich auf der InnoTrans 2012 vorgestellt wurde, etablierte sich die in Abbildung 1 dargestellte Struktur des TIS. So besteht der TIS im Moment aus 2 Ebenen: Der Innovationsplattform mit den Funktionen der Schwerpunktsetzung für Basisinnovationen, der Prozesssteuerung und der vertikalen und horizontalen Integration des TIS in Politik, Industrie und Wissenschaft, sowie der Ebene der Arbeitsgruppen, die im Themen bezogenen Austausch Grundlagenarbeit zum Waggon, zu den Teilsystemen des Waggons und den zugehörigen Komponenten leisten. Im Unterschied zu bisherigen Initiativen und Gruppierungen, die sich mit dem Themengebiet Schienengüterverkehr befasst haben, sind die Entscheidungsträger im TIS die Wagenhalter, also die Waggoninvestoren als eine Hauptakteursgruppe im Schienengüterverkehr.

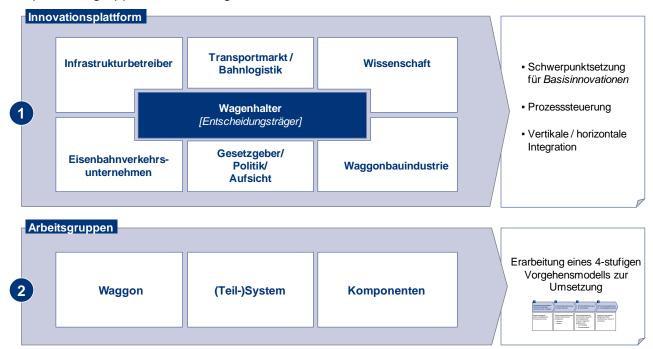


Abbildung 1: Struktur des TIS, [1]

Die Struktur der Arbeitsgruppen des TIS lässt sich aus der Abbildung 2 am Beispiel der Arbeitsgruppe Drehgestell erkennen. In dieser Arbeitsgruppe finden sich Firmen wieder, die sich mit dem Eisenbahndrehgestell der Zukunft befassen müssen oder wollen. Dazu gehören Infrastrukturbetreiber, die ein Interesse an geringem Schienenverschleiß haben, die Eisenbahnverkehrsunternehmen, deren Interesse an zuverlässigen stabilen Betrieb liegt, Wagenhalter mit dem Augenmerk auf Investitions- und Betriebskosten, sowie die Waggonbauindustrie, die ihre Erfahrungen im Bereich Konstruktion und Zulassung einbringen. Gemeinsam wurden die Projektziele festgelegt. Das sind die Definition der technischen und betrieblichen Anforderungen an das Drehgestell der Zukunft, die Beschreibung der LCC-, Transfer- und Migrationsmodelle, zulassungsrelevante Themen wie Kosten, Dauer und Risiken und Beschreibung der Finanzierungsmöglichkeiten bzw. Möglichkeiten zur Akquise von Fördermitteln.

Abbildung 2: Struktur der Arbeitsgruppe Drehgestelle

In der folgenden Übersicht sind die bei der Ausarbeitung dieses Berichts maßgeblich involvierten Personen aufgeführt.

Tabelle 1: Auflistung der am Abschlussbericht mitgewirkten Personen

Name	Firma/Institution	Anmerkung
Andreas Helm	DB Waggonbau Niesky	
Detlef Kappler	DB Waggonbau Niesky	
Hinrich Hempel	DB Schenker Rail	
Bastian Bißwanger	TU Berlin, ILS, FG SFZ ¹	zeitweise Mitarbeit
Patrick Eschweiler	TU Berlin, ILS, FG SFZ	zeitweise Mitarbeit
Markus Hecht	TU Berlin, ILS, FG SFZ	
Philipp Krause	TU Berlin, ILS, FG SFZ	zeitweise Mitarbeit
Klaus Schulner	Rail Cargo Austria	zeitweise Mitarbeit
Jens-Erik Galdiks	SBB Cargo	
Jürgen Hüllen	VTG AG	
Nico Helbig	Waggonbau Graaff	

¹ TU Berlin, Institut für Land- und Seeverkehr, Fachgebiet Schienenfahrzeuge

3. Vorgehensmodell

Die generelle Vorgehensweise bei der Arbeit des TIS ist in der Abbildung 3 dargestellt. Die vier Kernthemen sind in Blöcken abgegrenzt und wurden größtenteils in aufeinanderfolgen Schritten bearbeitet. Im Folgenden findet sich zu jedem Kernbereich ein Kapitel.

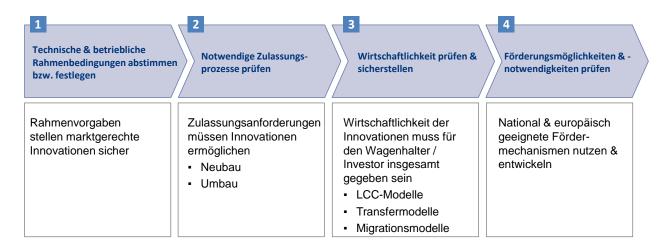


Abbildung 3: Vorgehensmodell zur Umsetzung

Vor der Beschreibung der relevanten technischen und betrieblichen Anforderungen des Drehgestells der Zukunft mussten zuerst die Schnittstellen, Module und Komponenten des Drehgestells eindeutig definiert werden. Die Schnittstellen ergeben sich dabei aus baulichen Gegebenheiten wie dem Übergang Wagenkasten zum Drehgestellrahmen dem Übergang vom Drehstellrahmen über die Primärfederung zu den Radsätzen und von den Radsätzen zur Schiene und von den Radsätzen zum Modul Bremssystem.

4. Technische und betriebliche Anforderungen

Bei den technischen und betrieblichen Anforderungen zeigt sich häufig ein Zielkonflikt. Die Lösungen mit dem größten Potenzial hinsichtlich Lärmproblematik und Leichtbau sind z.B. nicht ausreichend kompatibel zu allen Bahnstandards und machen zum Teil einen Systemwechsel notwendig, da mit kontinuierlicher Weiterentwicklung insbesondere die zukünftigen Lärmziele nicht erreicht werden können. Daraus ergibt sich die grundsätzliche Notwendigkeit die technischen Anforderungen an Basisinnovationen in zwei Varianten (A und B) zu formulieren. Diese erfolgen gemäß der in Anhang A erfolgten Definition von Innovationsvarianten im Rahmen von TIS und besitzen die folgenden Charakteristika.

Variante A:

- Basisinnovationen die in Bestandsflotte einsetzbar und für Nachbauten vorhandener Fahrzeugkonstruktionen geeignet sind
- Verbesserungen bezogen auf mindestens eines der fünf "L"-Felder

Variante B:

- Neue Fahrwerkskonstruktion für eine neue Fahrzeuggeneration, die in mehreren der fünf "L"-Feldern Verbesserungen aufweist
- Kompatibilität zum heutigen Betriebssystem muss gegeben sein (CW-Kennung)

4.1 Technische Anforderungen an das System Drehgestell generell

Das System Drehgestell umfasst die in den folgenden Abschnitten spezifizierten Module. Es besteht also aus Drehgestellrahmen, Bremsausrüstung, Radsätzen, Sensorik und allen weiteren Anbauteilen. Als technische Lebensdauer für das System Drehgestell (ohne Verschleißteile) werden 40 Jahre festgelegt.

		Kriterium	Technische Anforde- rung		Kommentar
1	Attribut	System Drehgestell generell	Variante A	Variante B	
1.1		Grunddaten			
1.1.1		Achsenzahl	2	2	
1.1.2		Spurweite	1.435 mm	1.435 mm	
1.1.3		Achsstand	1.800 mm	≠ 1.800 mm ?	Akustische Auswirkungen prüfen (vgl. Anmerkungen)

		Kriterium	Technische Anforde- rung		Kommentar
	Attribut	System Drehgestell generell	Variante A	Variante B	
1.2		Achslast			
1.2.1	F ²	Zulässige Achslast	\geq 22,5 t ³	25 t	
1.3		Geschwindigkeit			
1.3.1	F	Zulässige Geschwindigkeit lauftechnisch	120 km/h	120 km/h	
1.3.2	F	Zulässige Geschwindigkeit bremstechnisch in Standardversion	100 km/h	100 km/h	
1.3.3	F	Zulässige Geschwindigkeit bremstechnisch für SS-Verkehr	120 km/h	120 km/h	
1.3.4	W^4	Zulässige Geschwindigkeit lauftechnisch ⁵	160 km/h	160 km/h	
1.4		Gewicht			
1.4.1	F	Geringeres Gewicht als Referenz- Drehgestell Y25 1xBGU ohne Kopfträger bei gleicher Brems- ausrüstung (ohne Berücksichti- gung Gewicht Radsätze)	x ⁶	х	
1.5		Kompatibilität / Einbauraum			
1.5.1	F	Anbindung an Wagenkasten	Drehpfanne nach UIC 510- 1, Anlagen 8 und 9	keine Vorga- be	
1.5.2	F	Seitliche Abstützung am Wagen- kasten	Seitliche Abstützung nach UIC 510-1, Anlagen 8 und 9	keine Vorga- be	
1.5.3	F	Hüllraum	Hüllraum nach UIC 510-1, Anlage 11a	Hüllraum nach UIC 510- 1, Anlage 11a	
1.5.4	F	Fahrzeugbegrenzungslinie	wird nach UIC 505-1 einge- halten	wird nach UIC 505-1 einge- halten	
1.5.5	F	Kompatibel mit AK	Hüllraum nach UIC 510-1, Anlage 11a	Hüllraum nach UIC 510- 1, Anlage 11a	

² F ... Forderung

³ 25 to. Radsatzlast auch für Variante A erwünscht in Abhängigkeit der sich daraus ergebenden Implikatuonen für Entwicklungs- und Konstruktionsaufwand.

⁴ W ... Wunsch

⁵ Geschwindigkeit 160 km/h in Abhängigkeit der sich daraus ergebenden Implikationen für Entwicklungsund Konstruktionsaufwand.

⁶ x ... stellt grundsätzliches Kriterium dar

		Kriterium	Technische rui		Kommentar
	Attribut	System Drehgestell generell	Variante A	Variante B	
1.6		Lärm			
1.6.1	F	Waggon hält für bis 2016 erwartete TSI Noise Grenzwerte ein (Referenz-Drehgestell Y25 1xBGU ohne Kopfträger mit K-Sohle)	-2 dB ggü. ak- tuellem Grenzwert für Neubaufahr- zeuge ⁷	-4 dB ggü. aktuellem Grenzwert für Neubaufahr- zeuge	
1.7		Laufeigenschaften			
1.7.1	F	Verbesserte Laufeigenschaften mit positiven Effekten für In- standhaltung ⁸	X	X	Nachweisliche Senkung Radverschleiß , verbes- serter Fahrkomfort
1.7.2	F	Verbesserte Laufeigenschaften mit positiven Effekten für Infra- struktur	Х	X	Messkriterien sind vom Infrastrukturbetreiber festzulegen
1.7.3	F	Norm zur Laufgüte ist eingehalten	EN 14363	EN 14363	
1.7.4	F	Befahrbarer Gleismindestradius des Wagens	35 m ⁹	75 m	
1.8		Verschleiß			
1.8.1	F	Verringerter Rad-/ Spurkranzver- schleiß gegenüber Y25	х	х	Nachweis erforderlich
1.9		Zulassung			
1.9.1	F	Notwendige Komponentenzulassung nach TSI Wagon (gültig ab 01.01.2014)	х	х	
1.10		Wartung und Instandhaltung			
1.10.1	F	Standzeit aller Komponenten	Mindestens 600.000 km, Mindestens 6 Jahre	Mindestens 600.000 km, Mindestens 6 Jahre	
1.10.2	F	Instandhaltung aller Komponenten muss herstellerunabhängig durchführbar sein	Х	Х	
1.11		Einsatz im Betrieb			
1.11.1	F	Tauglichkeit zur vollständigen wagentechnischen Untersuchung im Betrieb (Betriebsgleis)	Х	Х	
1.12		sonstiges			
1.12.1	F	Beladeanzeige (Gesamtlast, Radlast, Lastverteilung)	Х	Х	am Wagen ohne Hilfs- mittel ersichtlich

 $^{^{7}}$ nur für Neufahrzeuge zu realisieren, nicht in Bestandsflotte.

 $^{^{\}rm 8}$ Resonanzverhalten und Lärmauswirkungen daraus sind zu berücksichtigen.

⁹ Ähnlicher Hüllraum wie bei Y25

4.1.1 Anmerkungen

Kriterium 1.1.3: Achsstand

Bezüglich des Achsstandes wurde eine Veränderung gegenüber dem aktuellen Achsstand des Y 25-Drehgestell von 1.800 mm diskutiert.

Grundlage der Diskussion war, den Achsabstand künftig nicht als ganzzahliges Vielfaches des Schwellenabstands (aktuell: 600mm zu 1.800 mm) auszulegen, um so eine verringerte Schwingungsanregung auf den Wagenkasten zu erreichen.

Aus einer Veränderung des Achsstands ergeben sich folgende Vorteile

- Verbesserung der Laufruhe (bei Verlängerung des Achsabstands)
- geringere Schwingungsanregung des Wagenkastens, allerdings sind keine konkreten Werte nachgewiesen
- ggfs. auch Reduktion der Instandhaltung am Gleis

Entgegen stehen folgende Nachteile

- Verschlechterung der Laufruhe (bei Verringerung des Achsabstands)
- Der Hüllraum des Y25 sowie der Einbauraum für die automatische Mittelpufferkupplung werden bei einer Verlängerung des Achsabstands nicht mehr eingehalten. Durch die Überschreitung des Hüllraums sind ein Einsatz unter Bestandsfahrzeugen sowie eine Weiterverwendung von bewährten Waggonaufbauten gemeinsam mit den neuen Drehgestellen nicht möglich.
- Durch den größeren Radsatzstand wird der DG-Rahmen länger und somit steigt die Masse an.

Kriterium 1.7.2: Verbesserte Laufeigenschaften mit positiven Effekten für Infrastruktur

Zu diesem Punkt sind noch umfangreiche Untersuchungen notwendig. Erste Ansätze sind: indirekte Bestimmung der Laufeigenschaften und des Verschleißes über Messung des Traktionsenergiebedarfs und systematische Untersuchung der Instandhaltungsprotokolle eines Radsatzes und Messung des Schienenverschleißes

Kriterium 1.7.4: Mindestradius des Waggons

Wird der Mindestradius des Wagens (i.e. kleinster befahrbarer Bogenhalbmesser) vergrößert, ist eine geringere Auslenkung des Drehgestells ausreichend. Dies ermöglicht eine andere Abstützung des Wagenkastens (ähnlich Personenwagen, Lokomotiven) und einen deutlich verbesserten Kraftfluss. So kann in erheblichem Maß Gewicht am Drehgestell und am Wagenkasten eingespart werden.

Allerdings ist das neue DG durch diese umfassenden Änderungen mit vielen bewährten Waggonkonstruktionen nicht kompatibel, wodurch Umkonstruktionen am Wagen und eine neue Zulassung notwendig werden.

Technische Universität Berlin Fachgebiet Schienenfahrzeuge

Kriterium 1.11.1: Tauglichkeit zur vollständigen wagentechnischen Untersuchung im Betrieb (Betriebsgleis)

Auch die mit dem neuen Drehgestell ausgerüsteten Wagen werden zukünftig gemäß des gültigen Regelwerks vor Abfahrt des Zuges der Kontrolle des Wagenmeisters unterzogen. Dabei ist sicherzustellen, dass sämtliche sicherheitsrelevanten Bauteile des Drehgestells beurteilt werden können. Neben der traditionellen unmittelbaren Sichtprüfung ist auch eine mittelbare Prüfung mittels Sensorik und Fernanzeigern, Skaleninstrumenten, Schaugläsern etc. konzeptionell einzubeziehen.

4.2 Technische Anforderungen an das Modul Drehgestellrahmen

Das Modul Drehgestellrahmen umfasst alle Bauteile, die der Radsatzführung, der Lastaufnahme und Lastübertragung dienen. Folglich werden in diesem Abschnitt die Schnittstellen zum Wagenkasten, zur Federung und Dämpfung, zum Bremssystem und zur Sensorik beschrieben.

		Kriterium	Technisc der		Kommentar
2	Attribut	Modul Drehgestell- rahmen	Variante A	Variante B	
2.1		Konstruktion			
2.1.1	F	Festigkeitsanforderungen eingehalten	EN 13749	EN 13749	
2.1.2	F	Rahmen ohne Kopfquerträger	x	x	geringerer Raumbedarf
2.1.3	F	Kopfträger als Bremsaufnahme als Ausführungsvariante	х	х	
2.1.4	F	Eigengewicht einschließlich Kopf- träger, Federn, Dämpfer, Gleit- stücke (aber ohne Radsätze, RS- Lager, Bremse)	Max. 1.250 kg	Max. 1.250 kg	
2.1.5	F	Verwendung von warmrichtbaren Stählen	X	х	
2.2		Federung / Dämpfung			
2.2.1	F	Vollständige akustische Entkopplung von RS zu DG	x	х	
2.2.2	F	Verbesserte Dämpfung zur lang- fristigen Schadensreduktion am Fahrzeug	х	х	
2.3		Schnittstellen zu Bremssystem			
2.3.1	F	Aufnahmemöglichkeit für Wägeventil	х	х	Bohrungen und Einbau- raum vorhanden
2.3.2	F	Geeignet für Einbau von Wellen- bremsscheiben	х	х	Bohrungen und Einbau- raum vorhanden
2.3.3	F	Geeignet für Einbau von einseitigen Kompaktbremsen	х	х	Bohrungen und Einbau- raum vorhanden
2.3.4	F	Geeignet für Einbau von ein- und zweiseitigen mechanischen Klotzbremsen	х	х	Bohrungen und Einbau- raum vorhanden
2.4		Schnittstellen zu Radsatz			
2.4.1	F	Mit erweitertem Freiraum für größer dimensionierte Radsätze: Wellen-Ø 250 mm	х	х	vgl. UIC SET 06
2.4.2	F	Keinerlei unerlaubter Kontakt zwischen Radsatz und sonstigen Bauteilen des DGs im Betrieb bei allen Verschleißzuständen	Х	Х	

		Kriterium	Techniscl deri		Kommentar
	Attribut	Modul Drehgestell- rahmen	Variante A	Variante B	
2.4.3	F	Überlastanzeige für Aufsetzen am Radsatzlager	х	х	Sanfterer Anschlag, kein Stahl auf Stahl
2.5		Schnittstellen zu Sensorik und Stromversorgung			
2.5.1	F	Einbaumöglichkeit für Sensorik für automatische Bremsprobe	Х	Х	Bohrungen, Einbauraum und Kabelführung vor- handen
2.5.2	F	Einbaumöglichkeit für Sensorik für Erfassung der Laufleistung	х	х	Bohrungen, Einbauraum und Kabelführung vor- handen
2.5.3	F	Einbaumöglichkeit für Sensorik zur Erkennung von Heißläu- fern/Lagerschäden	Х	Х	Bohrungen, Einbauraum und Kabelführung vor- handen
2.5.4	F	Einbaumöglichkeit für Sensorik zur Ermittlung der Achsbeladung	х	х	Bohrungen, Einbauraum und Kabelführung vor- handen
2.5.5	F	Einbaumöglichkeit für Beschleu- nigungssensoren	х	х	Bohrungen, Einbauraum und Kabelführung vorhanden
2.5.6	F	Einbaumöglichkeit für DG- autarke Stromversorgung	х	х	Bohrungen, Einbauraum und Kabelführung vorhanden
2.5.7	F	Einbaumöglichkeit für einen zentralen Verteilerkasten für sämtliche Sensorik am Drehge- stell	х	х	Bohrungen, Einbauraum und Kabelführung vorhanden Von außen zugänglich (Richtwert aus CargoCBM: 190 mm x 130 mm x 110 mm) Siehe Anhang B

4.2.1 Anmerkungen

Kriterium 2.5.7: Einbaumöglichkeit für einen zentralen Verteilerkasten für sämtliche Sensorik am Drehgestell

Für den Verteilerkasten kann zum aktuellen Zeitpunkt noch keine Größe angegeben werden. Allerdings wird es als sinnvoll eingeschätzt, eine Größenordnung vorzugeben. Als Beispiel wird der Verteilerkasten des Forschungs- und Entwicklungsprojekts CargoCBM herangezogen (Quelle: TU Berlin)

4.3 Technische Anforderungen an das Modul Bremssystem

		Kriterium	Techniscl deru		Kommentar
3	Attribut	Modul Bremssys- tem	Variante A	Variante B	
3.1	F	Basisvariante Drehgestell ohne Kopfträger für Einbau von zwei- seitigen Klotzbremsen. In einer Zusatzaustattung Einbau Kopf- träger möglich	X	Х	
3.2	F	Nutzung von K-Sohle muss mög- lich sein	x	х	
3.3	F	Nutzung von LL-Sohle muss mög- lich sein	х		
3.4	F	Geeignet für Einbau von Wellen- bremsscheiben	х	х	
3.5	F	Geeignet für Einbau von Kom- pakt-Klotz-Bremsen	х	х	z.B. CFCB, BFCB
3.6	F	Geeignet für Einbau von 2- seitigen Klotzbremsen (als Zu- satzausstattung)	х	х	
3.7	F	Geeignet für Einbau von 1- seitigen Klotzbremsen	х	х	
3.8	W	Geeignet für Einbau von Rad- bremsscheiben		х	
3.9	F	Einstellmöglichkeiten des Brems- systems für gemischten Betrieb	х	х	
3.10	F	Bremsauslegung des Waggons mittels Berechnung	х	х	
3.11	F	Standzeit der Wellenbrems- scheibe ist angepasst an die Standzeit der Radscheibe	х	х	
3.12	W	Tausch der Wellenbremsscheibe kann unabhängig von Demontage der Radscheibe durchgeführt werden	х	Х	

4.3.1 Anmerkungen

Kriterium 3.10: Standzeit der Wellenbremsscheibe ist angepasst an die Standzeit der Radscheibe

Kriterium 3.11: Tausch der Wellenbremsscheibe kann unabhängig von Demontage der Radscheibe durchgeführt werden

Bei beiden Punkten wird darauf abgezielt, dass unnötige Instandhaltungsarbeiten vermieden werden. So darf es nicht vorkommen, dass durch den Tausch einer verschlissenen Bremsscheibe ein Abpressen einer Radscheibe notwendig wird.

4.4 Technische Anforderungen an das Modul Radsätze

Das Modul Radsätze setzt sich aus den Bauteilen Radsatzwelle, Achslagergehäuse, Radsatzlager sowie Dichtungen, Radscheiben und Aufnahmen zur Radsatzführung zusammen. Rad- oder Wellenbremsscheiben sind ggf. Bauteile des Moduls Bremssystem. Die technischen Anforderungen an das Modul Radsätze stammen aus der Arbeit der AG Drehgestell des TIS und dem "Anforderungskatalog an eine instandhaltungsarme Radsatzwellenkonstruktion" (Stand 12.02.2013) aus der Zusammenarbeit der DB, UIC, JSG (Joint Sector Group) und der VPI. [2]

		Kriterium		he Anfor- ung	Kommentar
4	Attribut	Modul Radsätze	Variante A	Variante B	
4.1	F	Neueste EN-Normen müssen eingehalten werden einschließ- lich Ergebnisse EURAXLES	х	х	
4.2	F	Festigkeit aller Bauteile	Radsatzlast ≥ 22,5 t	Radsatzlast 25 t	
4.3		Radsatzlager			
4.3.1	F	Anschlussmaße des Radsatzes entsprechend Y25	Lagersitz nach UIC-Merkblatt 510-1, Ab- schnitt 4 und Anlage 2	nicht zwin- gend	
4.3.2	F	Lagerabmessungen	130 x 240 mm (130+x) x 240 mm		siehe Entwurf VPI/DB, [2]
	F			150 x 250 mm	
4.3.3	F	Durchmesser des Dichtringsitzes	160 mm; Optimiertes Dichtsystem sinnvoll		
	F			Geänderte Radsatzlager- gehäuse; op- timiertes De- sign	

		Kriterium	_	he Anfor- ung	Kommentar
	Attribut	Modul Radsätze	Variante A	Variante B	
4.3.4		Lagersystem	Geteilte Zylin- derrollenlager (ggf. abgedich- tet) oder Kar- tuschenlager		Auf Grund von Nachteilen im IH-Prozess auf Seiten der Kartuschenlager werden geteilte Zylinderrollenlager bevorzugt
4.3.5		Länge Wellenschenkel	191 mm 217 mm		bewährt bewährt
4.3.6	F	Radsatzlagermittenabstand auf der Welle	2000 mm	Innenlagerung prüfen	
4.3.7	F	Keine Behandlung des Wellen- schenkels (z.B. Molybdänbe- schichtung)	х	х	unwirtschaftlich
4.4		Wellenverschluss			
4.4.1	W	Wellenverschlussschrauben	Ersatz 3 x M20 durch optimierte Variante: 4 x M16 verlängerte Einschraublänge verlängerte Klemmlänge		Weiterer Untersuchungsbedarf erforderlich
4.4.2	F	Keine Verwendung von Nutmut- tern	Х	Х	Aufwendiger, ZfP- Prüfbarkeit von Wel- Ienstirn beeinträchtigt
4.5	F	Radsatzwellenwerkstoff	EA1N		bewährter weitverbreiterter Werkstoff
4.6		Radsitz			
4.6.1	F	Einheitlicher Durchmesser unter Berücksichtigung der Dimensio- nierungsvorgaben	х	х	Nur durch eine einheitli- che Schnittstelle wird die Kompatibilität von Rä- dern verschiedener Her- steller gewährleistet vereinfachte Zulassung
4.6.2	F	Gleiche Positionierung wie an 25 t Radsatzwelle (BA 302): Abstand Bezugsebene – äußere Radsitzkante: 58 + 1 mm Abstand Bezugsebene – innere Radsitzkante: 238 - 1mm	х	х	Nur durch eine einheitli- che Schnittstelle wird die Kompatibilität von Rä- dern verschiedener Her- steller gewährleistet vereinfachte Zulassung
4.6.3		Geometrie muss die Reduktion der Sitzlänge in der IH berück- sichtigen	х	х	

		Kriterium		he Anfor- ung	Kommentar
	Attribut	Modul Radsätze	Variante A	Variante B	
4.7		Längsbohrung			
4.7.1		Mit 30 mm Längsbohrung	X	X	Verbesserte Prüfbarkeit Gewichtsvorteil Offen: generelle NSA Forderung zu kurzen Prüfintervallen => un- wahrscheinlich, da RSW mit verbesserter Dimen- sionierung Kosten für Längsboh- rung Korrosion in der Längs- bohrung bei langen Still- standzeiten Verfügbarkeit Prüftech- nik in der europ. In- standhaltung
4.7.2		Ohne Längsbohrung	х	х	Prüfbarkeit von Außen- fläche oder Wellenstirn
4.8		Geometrie des Wellenschafts			
4.8.1		Durchmesser unter Berücksichtigung der Dimensionierungsvorgaben – zylindrische Ausführung	Х	Х	Einfachere geometrische Kontur Offen: Platzbedarf Fahrwerks- und Bremsbauteile
4.8.2		Durchmesser unter Berücksichtigung der Dimensionierungsvorgaben – konische Ausführung	X	X	Einbaubarkeit in vorhandene Fahrwerke Ggf. Anpassung mechanisierte UT Prüftechnik erforderlich mögliche Gewichtsreduktion Handling/ Transport Radsätze
4.9		Instandhaltungsreserven			
4.9.1	F	Durchmesser Radsitz: 3 mm	х	х	Gewährleisten der Instandhaltbarkeit nur 3 mm zur Definition Laufzeit der Wellen (3 Räder bei 1 mm Durchmesserreduktion pro Radtausch)
4.9.2	F	Durchmesser Wellenschaft: 3 mm	х	х	Gewährleisten der Instandhaltbarkeit

		Kriterium		he Anfor- ung	Kommentar
	Attribut	Modul Radsätze	Variante A	Variante B	
4.9.3	F	Durchmesser Notschenkel (au- ßerhalb des Dichtringsitzes): 2 mm	х	х	Gewährleisten der Instandhaltbarkeit
4.9.4	F	Durchmesser Wellenschenkel	Х	х	Keine Anwendung zur Vermeidung verschiede- ner Lagerinnendurch- messer
4.9.5	F	Instandhaltung gemäß IL, ISO, IS1, IS2 oder vergleichbare muss mit bestehenden Aufarbeitungsanlagen und –prozessen möglich sein	х	х	
4.10		Korrosionsschutz			
4.10.1		Mit Beschichtung	х	х	Aus Gründen des Aufwandes (Aufbringung, ZfP) zu vermeiden Offen: Schichtdicke der Beschichtung (Dünn- oder Dickschicht)
4.10.2		Ohne Beschichtung	х	х	Offen: Durchmessererhöhung gegenüber beschichte- ten Radsatzwellen
4.10.3		Lebensdauer Beschichtung: über Standzeit der Räder	х	х	Entspricht Vorgaben ECCM (MT – Prüfung bei Neubescheibung)
4.11	F	HOA (Heißläuferortungsanlage)- Eignung oder Sensorik	х	х	
4.12	F	Optimale Ausnutzung des Ver-	Grenzmaß TSI	Grenzmaß TSI	
		schleißvorrats	Radsätze	Radsätze	
			840 mm	≤ 830 mm	
4.13	W	Standzeit des Radsatzes (ohne	Mindestens	Mindestens	Mit Reprofilierung
		Lager)	600.000 km Mindestens	600.000 km Mindestens	
			12 Jahre	12 Jahre	
4.14	W	Mehrgewicht des Radsatzes	22 Juin C	Max. 50 kg	Ausnahme: Scheiben-
		gegenüber Radsatzbauart 004			bremse

4.5 Technische Anforderungen an das Modul Sensorik

Das Modul Sensorik umfasst die Informationstechnik (IT) aus den Elementen Sensoren und Datenübermittlung an die relevanten Akteure.

		Kriterium	Technisc der		Kommentar
5	Attribut	Sensorik	Variante A	Variante B	
5.1		Ausrüstung mit Informations- technik nach Telematik- Arbeitsgruppe ¹⁰			
5.1.1	F	Automatische Bremsprobe	x	x	
5.1.2	F	Erfassung der Laufleistung	х	х	
5.1.3	F	Erkennung von Heißläufern	х	х	
5.1.4	F	Ermittlung der Achsbeladung	х	х	
5.1.5	F	Beschleunigungen	х	х	Erkennung von Rangier- stoß, Flachstelle, Ent- gleisung, Fahrkomfort
5.1.6	F	Ermittlung des Verschleißzustandes an Scheibenbremsen	х	х	

4.5.1 Anmerkungen

Die Anforderungen im Bereich Sensorik folgen dem Ziel, dass für jede geforderte Aufgabe eine funktionsfähige und bahnzugelassene technische Lösung vorhanden ist sowie der notwendige Bauraum und die Befestigungselemente vorhanden sind. Ob das einzelne Drehgestell mit der Sensorik ausgestattet sein soll, liegt in der Entscheidung des Wagenhalters. Hierbei sei zur detaillierten Betrachtung auf den in der Arbeitsgruppe Sensorik/Telematik des TIS erstellten Anforderungskatalog sowie die entwickelten Morphologie-und Bewertungsmatrizen in Anhang B verwiesen.

Kriterium 5.3.3: Datenübermittlung über branchenspezifischen Übertragungsstandard Aktuell gibt es noch keinen Standard für die Übermittlung von Sensordaten. Von Seiten der Arbeitsgruppe Drehgestell wird empfohlen, diese Festlegung zeitnah zu treffen, da ansonsten in diesem Punkt keine Anforderung definiert werden kann.

¹⁰ Notwendige Informationen am Wagen

5. Notwendige Zulassungsprozesse für ein TSI-Drehgestell in den Varianten A und B

Tabelle 2: Zertifizierung des Drehgestells in der Variante A unter Anwendung der TSI WAG 08/57-ST17 Version EN03 vom 27.06.2012

lfd.	Drehgestell-	Wagen-	Schritt	TSI WAG	anzuwendende	Zeitbedarf	Risiko
Nr.	spezifisch	spezifisch			Normen	(Schätzung)	
1	х		Zertifizierung des Drehgestells	§6.1.2 (Conformity Assessment procedures)	Module CB+CD	6 Wochen	Innerhalb der jeweiligen Versuche
2	х		Statische- und Ermüdungsver- suche	§4.2.3.6.1 (Structural design of bogie frame)	EN13749	16 Wochen	Es kommt zu Rissen am Drehgestellrahmen. Konstruktion muss geändert werden. Versuche müssen wiederholt werden. → Erhöhung Zeit und Kosten
3		Х	Prüfung des Fahrverhalten und stationäre Versuche (Annahme: Fahrzeuge für die Versuche sind vorhanden)	§4.2.3.5 (Running safety) §4.2.3.5.1 (Safety against derailment running on twisted track) §4.2.3.5.2 (Running dynamic behaviour) §4.2.3.6 (Running gear)	EN14363 prEN15839	12 Wochen	Das Fahrverhalten entspricht nicht den Anforderungen der Normen. Konstruktion muss geändert werden. Versuche müssen wiederholt werden. → Erhöhung Zeit und Kosten
4	х		Durchführung der Betriebser- probung (Streckenversuche)	. 33 /	EN13479	52 Wochen	Es kommt zu Schäden oder erhöhtem Verschleiß. Konstruktion muss geändert werden. Betriebserprobung muss wiederholt werden. This is a schäden oder erhöhtem verschlich werden. This is a schäden oder erhöhtem verschlich werden.
5		Х	Verwendung des Drehgestells in Güterwagenzertifizierungen		PrEN16235	-	Bemerkung, zur Befreiung von Fahrver- suchen sollten die Bedingungen aus PrEN16235 berücksichtigt werden

Module

lfd Nr.	Drehge- stell- spezifisch	Wagen- spezifisch	Schritt	TSI WAG	anzuwendende Normen	Zeitbedarf (Schätzung)	Risiko
6	х		Radsatz (Interoperabilitäts- komponente gemäß TSI)	§4.2.3.6.2 (Characteristics of wheelsets)	EN13260	-	Kein Risiko, Radsatz ist zugelassen und erfüllt die Anforderungen der TSI WAG
7	Х		Radscheibe/Vollrad (Interoperabilitätskomponente gemäß	§4.2.3.6.3 (Characteristics of wheels)	EN13979-1	-	Kein Risiko, Welle ist zugelassen und erfüllt die Anforderungen der TSI WAG
8	Х		Radsatzwelle (Interoperabilitätskomponente gemäß TSI)	§4.2.3.6.4 (Characteristics of axles)	EN13103	-	Kein Risiko, Rad ist zugelassen und erfüllt die Anforderungen der TSI WAG
9	Х		Federn		EN13913	unklar ¹¹	
10	Х		Dämpfer		EN13802	unklar ⁷	
11	Х		Lager		EN12080	unklar ⁷	
12	Х		Lagerfett		EN12080	unklar ⁷	
13	Х		Lagergehäuse	§4.2.3.6.5 (Axle boxes / bearings)	EN12082 + EN13749	unklar ⁷	
14	Х		Bremse	§4.2.4 (Brake)		-	Kein Risiko, Bremssystem ist zugelassen und erfüllt die Anforderungen der TSI WAG
•			Lärm				
15		Х	Lärmmessung (Annahme: Fahrzeuge für die Versuche sind vorhanden)	TSI Noise		2 Wochen	Das Drehgestell erreicht nicht den gewünschten Lärmpegel.

Zeitbedarf ab vollständiger Abgabe der Dokumentation und Bereitstellung 36 Wochen der Versuchsträger (Zeitbedarf ohne Betriebserprobung lfd.-Nr. 4)

¹¹ Daten sind vom Hersteller zu liefern

6. Betrachtung der Wirtschaftlichkeit/ Entwicklung von LCCund Ertragswertmodellen

Das Thema LCC-Berechnung kann im Moment nicht abschließend bearbeitet werden. In der Arbeitsgruppe Drehgestell herrscht Konsens darüber, dass ein branchenweit gültiges Modell mit branchenweit anerkannten Effekten/Nutzen benötigt wird. Grund dafür ist die große Streuung der Ergebnisse bei der Bestimmung einzelner Kostenpunkte. Die Diskussion über einzelne Faktoren im LCC-Modell ist noch nicht abgeschlossen. Konsens besteht, dass alle relevanten Effekte und damit auch die betrieblichen Vorteile eines neuen Drehgestells im LCC Modell wirksam werden müssen. Offene Punkte sind z.B. die Kosten, die durch ein notwendiges Ausreihen eines schadhaften Waggons aus einem Zugverband bestimmt werden sollen oder welche Kosten durch die Stillstandzeit der beteiligten Lok entstehen.

Außerdem muss noch geklärt werden, wie die Kosten durch den Verschleiß der Gleise bezogen auf ein Drehgestell bestimmt werden können. Sowohl der drehgestellbezogene Verschleiß der Infrastruktur als auch der Lärm sollten zukünftig Bestandteil eines Modells sein können, je nachdem ob der Trassenpreis dies beinhaltet oder nicht.

Durch die unterschiedlichen jährlichen Laufleistungen, eingeteilt in drei Gruppen von bis zu 50.000 km, ab 50.000 bis 100.000 km und von 100.000 bis 200.000 km entstehen unterschiedliche Einsatzprofile. Gepaart mit den drei Bremstypen konventionelle K-Klotzbremse, Kompaktbremse und Wellenscheibenbremse ergeben sich für den Drehgestellrahmen mit den Varianten A und B insgesamt 18 Szenarien, für die jeweils ein eigenständiges Ertragswertmodell zu entwickeln ist (vgl. Abbildung 4). Die Radsatzmodule sind teils abhängig, teils unabhängig davon und eröffnen weitere Optimierungsmöglichkeiten.

				Laufleistung im Jahr									
			bis zu 50).000 km	50.000 100.00		100.000 km - 200.000 km						
		Variante	Α	В	Α	В	Α	В					
		Konventionelle											
er	γp	K-Klotzbremse											
Verbauter	Bremstyp	Kompakt-											
dri	e.	bremse											
م ج	B	Wellenschei-											
		benbremse											

Abbildung 4: Grafische Verdeutlichung der zu untersuchenden LCC-Modellvarianten

Es herrscht auch Konsens darüber, dass ein abgestimmtes bzw. anerkanntes LCC-Modell für das System Drehgestell die Grundlage für die Weiterentwicklung von Transfermodellen aus den Betrachtungen der Querschnittsarbeitsgruppe LCC-/Ertragswertmodelle sowie der AG Radsatz ist. Da viele Kostenkomponenten von Land zu Land variieren, wird das LCC-Modell die relationsspezifischen Kosten berücksichtigen müssen. In welcher Form dies geschieht, ist noch offen. In Anhang C ist eine im Rahmen des TIS erstellte und durch die Arbeitsgruppe Drehgestell ausgefüllte Matrix zur Erstellung von LCC-/Ertragswertmodellen an Hand der betrachteten Merkmale für ein innovati-

Bericht 01/2013 Stand: 13. März 201413.03.2014

Technische Universität Berlin Fachgebiet Schienenfahrzeuge

ves Güterwagendrehgestell dargestellt, die das weitere Vorgehen skizziert. Zudem findet sich in ANHANG D eine Zusammenstellung der Effekte, die bisher in der Arbeitsgruppe Drehgestell erörtert wurden.

7. Fördermöglichkeiten und Forschungslandschaft

Die folgende Abbildung (Abbildung 5) zeigt eine tabellarische Übersicht über die Fördermöglichkeiten in Deutschland und der EU, die Zielsetzung der Förderprogramme und die Anforderungen an die Förderempfänger.

Gesellschaft	Förderrahmen	Ziel	Förderempfänger	
DFG	Forschungsförderung	Stärkung der Wissenschaft	Forschungseinrichtung	Grundlagenforschung
		kommerziell verwertbares Ergebnis,	Forschungseinrichtung,	
BMWi		Kooperation Wirtschhaft / Wissenschaft	KMU	Produktentwicklung
	Zentrale			
	Innnovationsprogramm	kommerziell verwertbares Ergebnis,	Forschungseinrichtung,	
ZIM (BMWi)	Mittelstand	Kooperation Wirtschhaft / Wissenschaft	KMU	Produktentwicklung
BMU	Umweltinnovationsprogramm	Demonstrationsobjekt für Innovation	Investoren	Produkteinführung
		technische Entwicklung von	Unternehmen,	abhängig von
BMBVS	Förderprogramm	Schwerpunktthemen	Forschungseinrichtung	Förderprogramm
		technische Entwicklung von	Unternehmen,	abhängig von
BMBF	Förderprogramm	Schwerpunktthemen	Forschungseinrichtung	Förderprogramm
		Flächendeckende Einführung einer		
KfW	Breitenförderung	Technologie	Investoren	Produkteinführung
			Forschungseinrichtung,	
EU	Forschungsrahmenprogramm	Entwicklung der Innovation Union	KMU	Grundlagenforschung

Abbildung 5: Übersicht über Fördermöglichkeiten in Deutschland und EU

Unter dem folgenden Link findet sich eine Zusammenstellung aller europäischen F&E-Projekte im Bereich Schiene: http://www.transport-research.info/web/projects/

In Anhang E befindet sich eine Übersicht über Förderprojekte für den Schienengüterverkehr respektive mit Bezug zu diesem. Hierbei ist eine Unterteilung in nationale Einzelförderprojekte, EUweite Einzelförderprojekte sowie Plattformprojekte in Deutschland bzw. in der EU erfolgt. Dabei beteiligte Teilnehmer aus dem TIS sind in einer separaten Spalte hervorgehoben.

8. Literaturverzeichnis

- [1] R. König und M. Hecht, Weissbuch Innovativer Eisenbahngüterwagen 2030, Dresden, 2012.
- [2] DB, UIC, JSG, VPI, "Anforderungskatalog an eine neue instandhaltungsarme Radsatzwellenkonstruktion," 2013.
- [3] J. Hüllen, "Definition von Innovationsvarianten im Rahmen von TIS," Folie, TIS-Meeting Hamburg, Stand 13.03.2013.
- [4] J. Hüllen, "Matrix für LCC-/Ertragswertmodelle," Folie, TIS-Meeting Hamburg, Stand 13.03.2013.
- [5] J. Hüllen, "Perspektiven des Schienengüterverkehrs aus Sicht eines Güterwagenhalters /vermieters," *ZEV Rail*, pp. 50-54, 2013.
- [6] M. Hecht, "Maßnahmen für ein gesundes wirtschaftliches Wachstum des Schienengüterverkehrs," Wien, 2012.

ANHANG A

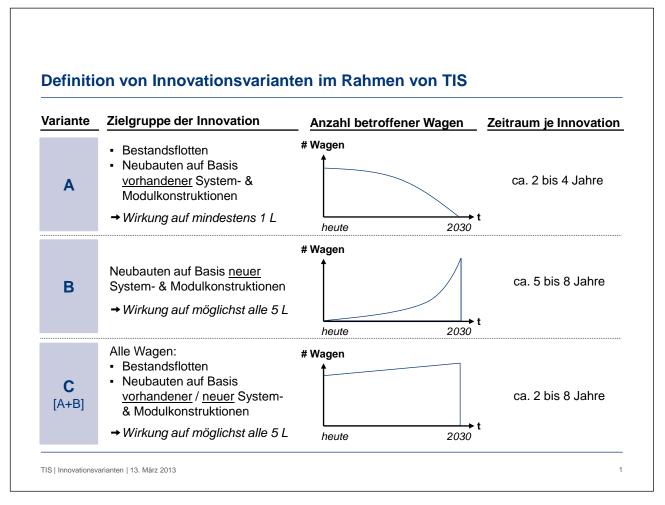


Abbildung 6: Folie zur Illustration definierter Innovationsvarianten aus TIS, [3]

ANHANG **B**

Definition Ausprägung Minimum: Variante mit niedrigsten Kosten auf Seite Wagenhalter

.fd Nr. Anwendungsfall	Erfassungs- intervall Information	Übertragungs- intervall Information	Geo-	Bewegungs- erfassung	Beschleunigungs erfassung	Engleisungs erfassung	Laufleistungs erfassung		Gewichtserfassung				Zustand Komp	onente			sonstige	Sensorik		Fahrzeug- identifikation	Bauteil- identifikation	Ladungs- identifikation	Nutzergruppe
	momaton	mormation						digital (beladen leer)	d Grenzwert	exakte Messung	Handbremse	Bremssohle	Radsatzlager (Temperatur, Schäden)	Durchmesser Radscheibe (besser durch Infrastruktur umsetzbar!!)	Unrundheit Radscheibe / Federung Flachstelle	Temperatur	Druck	Türen	Ventile		l	ı	
1. Flottensteuerung														,								ja	Verlader
.1. Tracking & Tracing	60 Min	Ereignisbezoge	en ja	ja																ja			EVU
.2. Disposition Einzelfahrzeug -> Flotte	ereignisbezogen		ja	ja				ja			ja								_	ja		ja	Nutzer
Laufleistungserfassung Ladungsinformation	gemäß Analyse	täglich	ja				ja										_			ja	ja		Halter / ECM
2. Ladungsinformation	permanent	-														ia	+	_		ia		ia	Kunde
2.2. Beladungszustand	permanent							ia								ja				ja ia		ja ja	Ruide
2.3. Überladung	ereignisbezogen			ja				ja											1	ja			ECM
.4. Verwiegen	ereignisbezogen			ja				ja												ja			Kunde / Infrastruktu
1.5. Sendungspünktlichkeit																							
Leistungsprozess (Betrieb)																							
J.1. Zugvollständigkeit	permanent	-		ja					1		I					1	1	-	+	ja		-	Infrastruktur / EVU
i.2. Zugreihung	ereignisbezogen	-	- :-	ja :-				1	-							1		+	+	ja			EVU Halter / EVU / Infrastr
	permanent	+	ja ia	ja ia	ja ia	ја			1							1	+	+	+	ja ia			Kunde / EVU
.4. Rangierstöße .5. autom. Bremsprobe	ereignisbezogen ereignisbezogen	+	ja ja	ja ja	ja			1	+		1					1	+	+	+	ja ia			EVU
Unterstützungsprozess IH	5.0igiii3b020geii															1		+	1	jα			
.1. Überwachung Baugruppen (Verschleißvorrat)									1														Halter / ECM
.2. Überwachung Baugruppen (Zustand)																							Halter / Nutzer
.3. Nachverfolgung kritische Baugruppen																							Halter / ECM
Unterstützungsprozess (sonstige)																							
.1. Automatisierung Abrechnung	ereignisbezogen		ja	ja																		ja	Halter
i.2. Informationsübergang Transporteur/Kunde	ereignisbezogen		ja					ja ·												ja		ja	1/ 1
i.3. autom. Be-/Entladung	ereignisbezogen		ja Beidseitiger RFID					ja								-				ja		ja	Kunde
Ausprägung Minimum (−)	Akku (2015)	Manuelles Auslesen per Handheld	Tag an Wagen mit	Beschleunigungs sensor	Beschleunigungs sensor	Beschleunigungs sensor + Kommunikation an Tf/Fdl	Rotationszähler an Radsatzwelle	Beschleunigungs sensor (in Fahrt- Messung)		Multi-Kraft- Sensor Schwingsaite		"exte	erne" Sensorik auf Se	eiten Infrastruktur									
	Energy Harvesting "Wellen/Strahlen"	"WLAN" => Hotspot Infrastruktur an wichtigen Knoten/Bahnhöf	grobe Erfassung Position über GSM	Rotationssensor am Radsatz		Beschleunigungs sensor + Kommunikation an Tfz	Mechanischer Zähler in Radsatzlager	"Raum-Sensor": Lichtschranke o.ä.	Kraft-Sensor DMS	Multi-Kraft- Sensor DMS			rne" Sensorik integrie ss noch im TIS defi										
	Energy Harvesting "Vibration"	"WLAN" => Lot als Hotspot		"Permanent"-GPS		Beschleunigungs sensor + Entlüftung HL	Induktiver Zähler in Radsatzlager	Sensor Wiegeventil								-							
Ausprägung / Lösungsvariante	Energy Harvesting "Thermo"	LTE)	Galileo (2030)-/ GPS-Lokalisation				Nutzung Geolokalisation - Layer- Algorithmus	+ Wege-Sensor Federweg															
	Energy Harvesting "Solar"	и, UMTS,	Kombination GPS-/GSM- Lokalisation					Wege-Sensor Abstand SOK															
	Radsatz generator	Mobilfunk (GSN	Kombination GSM-Position und Streckennetzlaye r während der Fahrt + GPS bei Abstellung (2015)					Kraft-Sensor Schwingsaite															
	Energieversorgung Druckluftturbine aus HL	Satellit	DGPS					Kraft-Sensor DMS															
Ausprägung Maximum (++)	durchgängige Energieversorgung (2030)																						

Abbildung 7: Anforderungskatalog TIS-AG Sensorik

Technische Universität Berlin Fachgebiet Schienenfahrzeuge

Definition Ausprägung Minimum: Variante mit niedrigsten Kosten auf Seite Wagenhalter

	(d Nr. Anwandungsfall / Madray / Figurentiate Ausprägung Minimum Ausprägung / Lönusentiate Mo								Ausprägung
	Anwendungsfall / Merkmal / Eigenschaft Flottensteuerung	Sensorik	(-)		Au	ısprägung / Lösungsvaria	nte		Maximum (++)
	Tracking & Tracing	Energieversorgung	Batterie	Energy Harvesting "Wellen/Strahlen"	Energy Harvesting "Vibration"	Energy Harvesting "Thermo"	Energy Harvesting "Solar"	Radsatz generator	
		Datenübertragung	Manuelles Auslesen per Handheld	"WLAN" => Hotspot Infrastruktur an wichtigen Knoten/Bahnhöfen	"WLAN" => Lok als Hotspot	GSM	UMTS	LTE	Satellit
		Geolokalisation	Beidseitiger RFID-Tag an Wagen mit streckenseitigen RFID- Readern europaweit	grobe Erfassung Position über GSM Zellenortung	Erfassung über triangulation GSM-Masten	Galileo-/ GPS-Lokalisation	Kombination GPS-/GSM- Lokalisation	Kombination GSM- Position und Streckennetzlayer während der Fahrt + GPS bei Abstellung	DGPS
		Bewegungserfassung	Beschleunigungs sensor	Rotationssensor am Radsatz	"Permanent"-GPS				
		Häufigkeit Erfassen Häufigkeit Senden	Start/Zwischenstopps/Ziel Start/Zwischenstopps/Ziel	Stop & Go Stop & Go	mehrmals täglich mehrmals täglich	stündlich stündlich	mehrmals stündlich mehrmals stündlich	5 Minuten 5 Minuten	
				Energy	Energy	Energy	Energy		
1.2.	Disposition Einzelfahrzeug -> Flotte	Energieversorgung	Batterie Manuelles	"Wellen/Strahlen" "WLAN" => Hotspot	Harvesting "Vibration"	Harvesting "Thermo"	Harvesting "Solar"	Radsatz generator	
		Datenübertragung	Auslesen per Handheld	Infrastruktur an wichtigen Knoten/Bahnhöfen	"WLAN" => Lok als Hotspot	GSM	UMTS	LTE Kombination GSM-	Satellit
		Geolokalisation	Beidseitiger RFID-Tag an Wagen mit streckenseitigen RFID- Readern europaweit	grobe Erfassung Position über GSM Zellenortung	Erfassung über triangulation GSM-Masten	Galileo-/ GPS-Lokalisation	Kombination GPS-/GSM- Lokalisation	Position und Streckennetzlayer während der Fahrt + GPS bei Abstellung	DGPS
		Bewegungserfassung	Beschleunigungs sensor	Rotationssensor am Radsatz	"Permanent"-GPS				
		Gewichtserfassung digital (beladen/ leer)	Beschleuniungs sensor (in Fahrt-Messung)	"Raum-Sensor": Lichtschranke o.ä.	Sensor Wiegeventil	Wege-Sensor Federweg	Wege-Sensor Abstand SOK	Kraft-Sensor Schwingsaite	Kraft-Sensor DMS
		Häufigkeit Erfassen Häufigkeit Senden	Start/Zwischenstopps/Ziel Start/Zwischenstopps/Ziel	Stop & Go Stop & Go	mehrmals täglich mehrmals täglich	einmal morgens zur LWV einmal morgens zur LWV	stündlich stündlich	mehrmals stündlich mehrmals stündlich	5 Minuten 5 Minuten
				"WLAN" => Hotspot					
1.3.	Laufleistungserfassung	Übertragungsintervall Information	Manuelles Auslesen per Handheld	"WLAN" => Hotspot Infrastruktur an wichtigen Knoten/Bahnhöfen	"WLAN" => Lok als Hotspot	GSM	имтѕ	LTE	Satellit
		Geolokalisation	Beidseitiger RFID-Tag an Wagen mit streckenseitigen RFID- Readern europaweit	grobe Erfassung Position über GSM Zellenortung	Erfassung über triangulation GSM-Masten		bination GPS-/GSM-Lokalis	Streckennetzlayer während	DGPS
		Laufleistungs erfassung Häufigkeit Erfassen Häufigkeit Senden	Rotationszähler an Radsatzwelle Start/Zwischenstopps/Ziel Start/Zwischenstopps/Ziel	Mechanischer Zähler in Radsatzlager Stop & Go Stop & Go	Induktiver Zähler in Radsatzlager mehrmals täglich mehrmals täglich	Nutzung Geolokalisation + Layer-Algorithmus stündlich stündlich	mehrmals stündlich mehrmals stündlich	5 Minuten 5 Minuten	
2.	Ladungsinformation								
	Zustand der Ladung			Enormy	From	Enorm	Energy		
2.2.	Beladungszustand	Energieversorgung	Batterie	Energy Harvesting	Energy Harvesting	Energy Harvesting	Energy Harvesting	Radsatz generator	
		Gewichtserfassung digital (beladen/ leer)	Beschleuniungs	"Wellen/Strahlen" "Raum-Sensor":	"Vibration" Sensor	"Thermo" Wege-Sensor Federweg	"Solar" Wege-Sensor	Kraft-Sensor	Kraft-Sensor
		Häufigkeit Erfassen	sensor (in Fahrt-Messung) Manuell beim Be-/Entladen durch Kunde/WgPrüfer	Lichtschranke o.ä. Manuell nach Be- /Entladen durch Kunde/WgPrüfer	Wiegeventil Automatisch beim Be- /Entladen	Automatisch nach Be- /Entladen	Abstand SOK Automatisch regelmäßig im Betrieb	Schwingsaite	DMS
		Häufigkeit Senden/Anzeigen	Manuell beim Be-/Entladen durch Kunde/Wg-Prüfer	Manuell nach Be- /Entladen durch Kunde/WgPrüfer	Automatisch beim Be-/Entladen	Automatisch nach Be- /Entladen	Automatisch regelmäßig im Betrieb		
2.3.	Überladung	Energieversorgung	Batterie	Energy Harvesting "Wellen/Strahlen"	Energy Harvesting "Vibration"	Energy Harvesting "Thermo"	Energy Harvesting "Solar"	Radsatz generator	
		Gewichtserfassung Grenzwert	Kraft-Sensor Schwingsaite	Kraft-Sensor DMS					
		Häufigkeit Erfassen	Manuell beim Be-/Entladen durch Kunde/WgPrüfer	Manuell nach Be- /Entladen durch Kunde/WgPrüfer	Automatisch beim Be- /Entladen	Automatisch nach Be- /Entladen	Automatisch regelmäßig im Betrieb		
		Häufigkeit Senden/Anzeigen	Manuell beim Be-/Entladen durch Kunde/Wg-Prüfer	Manuell nach Be- /Entladen durch Kunde/WgPrüfer	Manuell nach Be- /Entladen	Automatisch beim Be-/Entladen	Automatisch nach Be- /Entladen	Automatisch regelmäßig im Betrieb	
2.4.	Verwiegen	Energieversorgung	Batterie	Energy Harvesting	Energy Harvesting	Energy Harvesting	Energy Harvesting	Radsatz	
		Gewichtserfassung exakte Messung	Multi-Kraft-Sensor Schwingsaite	"Wellen/Strahlen" Multi-Kraft-Sensor DMS	"Vibration"	"Thermo"	"Solar"	generator	
		Häufigkeit Erfassen	Manuell beim Be-/Entladen durch Kunde/WgPrüfer	Manuell nach Be- /Entladen durch Kunde/WgPrüfer Manuell nach Be-	Automatisch beim Be- /Entladen	Automatisch nach Be- /Entladen	Automatisch regelmäßig im Betrieb		
		Häufigkeit Senden/Anzeigen	Manuell beim Be-/Entladen durch Kunde/Wg-Prüfer	/Entladen durch Kunde/WgPrüfer	Automatisch beim Be-/Entladen	Automatisch nach Be- /Entladen	Automatisch regelmäßig im Betrieb		
3.	Sendungspünktlichkeit Leistungsprozess (Betrieb) Zugvollständigkeit								
	Zugreihung			Eastern	F	Facers	Enc		
3.3.	Entgleisung	Energieversorgung	Batterie	Energy Harvesting "Wellen/Strahlen"	Energy Harvesting "Vibration"	Energy Harvesting "Thermo"	Energy Harvesting "Solar"	Radsatz generator	
		Engleisungserfassung	Beschleunigungssensor + Kommunikation an Tf/Fdl	Beschleunigungssensor + Kommunikation an Tfz	Beschleunigungssensor + Entlüftung HL				
		Häufigkeit Erfassen Häufigkeit Senden/Anzeigen	Während Fahrt :-)	24/7					
3.4.	Rangierstöße	Energieversorgung	Batterie	Energy Harvesting	Energy Harvesting	Energy Harvesting	Energy Harvesting	Radsatz generator	
		Beschleunigungserfassung	Beschleunigungs	"Wellen/Strahlen"	"Vibration"	"Thermo"	"Solar"		
		Häufigkeit Erfassen	Automatisch beim Be- /Entladen	Automatisch beim Be- /Entladen und bei Umstellungen an Knotenpunkten (Rbf)	24/7				
		Häufigkeit Senden/Anzeigen	Automatisch beim Be- /Entladen	Automatisch beim Be- /Entladen und bei Umstellungen an Knotenpunkten (Rbf)	24/7				
3.5.	autom. Bremsprobe			,					
4.	Unterstützungsprozess IH Überwachung Baugruppen (Verschleißvorrat)								
4.2.	Überwachung Baugruppen (Zustand) Nachverfolgung kritische Baugruppen								
5.	Unterstützungsprozess (sonstige) Automatisierung Abrechnung								
5.2.	Informationsübergang Transporteur/Kunde								
5.3.	autom. Be-/Entladung	<u> </u>	I		1	<u> </u>			

Abbildung 8: Morphologischer Kasten der TIS-AG Sensorik

Technische Universität Berlin Fachgebiet Schienenfahrzeuge

Lfd Nr.	Anwendungsfall	Kundennutzen	technische Realisierbarkeit	Migrations- fähigkeit / -zeitraum	Einmalkosten (Systematik gemäß Weißbuch)	laufende Kosten (Systematik gemäß Weißbuch)	Wirtschaftlichkeit unter Kosten/ Nutzenaspekt (Systematik gemäß Weißbuch)	Priorität (Stärkung Wettbewerbs- fähigkeit)	Schnelle Umsetzbarkeit im Demonstrator
1.	Flottensteuerung								
1.1.	Tracking & Tracing	Kunde/Verlader ++	++	++	++	+	+	++	++
1.2.	Disposition Flotte	Nutzer/Halter ++	0	+	0	0	++	++	+
1.3.	Laufleistungserfassung	EVU/Halter/ECM ++	++	++	++	+	+	+	++
2.	Ladungsinformation								
2.1.	Ladungszustand (beladen > 20 % Nettozuladung)	Kunde/Verlader ++	++	++ (Nachrüstung +)	++ (Nachrüstung +)	++	++	++	++
2.2.	Überladung (Grenzwertbetrachtung)	ECM/Verlader ++	+	-	+ (Nachrüstung o)	++	+	+	+
2.3.	Verwiegen (exakte Messung)	Kunde + / Infrastruktur ++	0		o (Nachrüstung -)	- (KW)		0	
3.	Leistungsprozess (Betrieb)								
3.1.	Zugvollständigkeit	Infrastruktur/EVU ++	0		?	++	?	++	0
3.2.	Zugreihung	EVU ++	0	-	?	++	?	(insbesondere	+
3.3.	Bremsprobe (unterstützend/vollautomatisch)	EVU ++	+ (vollautomatisch -)	0	+ (vollautom)	++	++	vollautomatsch)	++ (unterstützend)
3.4.	Entgleisung	Halter / EVU / Infrastruktur ++	+ (feste Fahrbahn ++)	+	+	++	+	0	++
3.5.	Rangierstöße	Kunde / Verlader / EVU ++	++	++	++	++	+	+	++
4.	Unterstützungsprozess IH								
4.1.	Überwachung Baugruppen (Verschleißvorrat)	Halter / ECM ++	Bremsklotz ind. O, Radscheibe -	++	+	++	+	++	-
4.2.	Überwachung Baugruppen (Zustand)	Halter/ECM/EVU ++	Unrundheit, Bremsklötze ind. & Flachstellen o, Ausbrüche -	+	+	++	+	+	+ (Flachstelle)
4.3.	Nachverfolgung kritische Baugruppen	Halter / ECM +	++	++	++	++	++	0	++
5.	Unterstützungsprozess (sonstige)								
5.1.	Automatisierung Abrechnung	Halter +	+	+	0	+	+	0	
5.2.	autom. Be-/Entladung	Kunde/Verlader +	Schnittstelle ++, Chemiepaletten o		-	++	0	o bis ++	

Abbildung 9: Bewertung der TIS-AG Sensorik

ANHANG **C**

Innovationsprojekte: Basisinnovationen am	Systeme + Module jeweils inkl. Auswirkung auf			Wirkungszio es 5L-Ansat				de	s Schienengüt	i Hauptakteure erverkehrs (SG' gering 5 = ho	Vs)			Wirkung auf die Erhöhung der Akzeptanz des SGV
Eisenbahngüterwagen (EGW)	Instandhaltung (Regelwerke & planmäßige/unplanmäßige Instandhaltung)	Leicht	Lärmarm	Laufstark	Logistik- orientiert	LCC- orientiert	Wagen- halter	EVU	EIU	Operateur/ Logistiker/ Spediteuer	Verlader / Kunde	Σ	Ø	Skala 1 bis 5 1 = gering 5 = hoch
1. Innovative Drehgestelle	a) System Drehgestell		х	х		Х	5	3	4	1	1	14	2,8	
	b) Modul Radsatz		Х	Х		Х	5	1	1	1	1	9	1,8	
	c) Modul Drehgestell Rahmen	Х	Х	Х		Х	5	1	1	1	1	9	1,8	
	d) <i>Modul</i> Bremssystem		Х	Х		Х	5	3	1	2	2	13	2,6	
	e) <i>Modul</i> Sensorik / Telematik			Х	Х	Х	1	5	3	5	5	19	3,8	
	f) Modul Instandhaltung/Regelwerke			х		Х	5	1	1	1	1	9	1,8	

Abbildung 10: Teilausschnitt "Innovative Drehgestelle" der Matrix für LCC-/Ertragswertmodelle aus TIS, ausgefüllt durch AG Drehgestell (Stand 27.03.2013), [4]

ANHANG D

Wirtschaftliche Auswirkungen durch das neue Standard-Drehgestell im Vergleich zu Y25 als Basis für ein LCC-Modell

- a) Einmaleffekte für Neueinführung der Konstruktion (materialunabhängig)
 - 1. Entwicklungskosten
 - a. Konstruktion
 - b. Zulassung
 - c. Probebetrieb (Inbetriebnahme)
 - 2. Umstellung Instandhaltung
 - d. Erstbevorratung
 - e. Beschaffung Spezialwerkzeuge
 - f. Mitarbeiterschulung (Inbetriebnahme)
- b) Einmaleffekte pro Drehgestell
 - 1. Beschaffung
 - 2. Außerbetriebnahme: Entsorgung/Verwertung
 - Demontage
 - Verkauf
 - Verschrottung
- c) Laufende Effekte -Ausfallzeit
 - 1. Laufende Wagenkosten: Instandhaltungskosten (Halter)
 - a. Zuführung
 - Versorgung Ersatzteile
 - Verbrauchsmittel
 - b. Präventive Instandhaltung (planmäßige Instandhaltung, zustandsbasierte Instandhaltung)
 - c. Korrektive Instandhaltung (außerplanmäßige Instandhaltung)
 - d. Instandsetzung abhängig von Ausfallrate
 - · Reparatur mit Werkstattlauf
 - Mobile Instandhaltung Notfallreparatur vor Ort
 - 2. Nutzungsausfall inklusive Reservevorhaltung
 - 3. Produktivitätssteigerung durch technische Maßnahmen
 - a. Höhere Zuladung durch geringeres Drehgestellgewicht möglich
 - b. Höhere Zuladung durch höhere zulässige Achslast
- d) Laufende Effekte -Betriebszeit
 - 1. Betriebliche Kosten (EVU)
 - a. Wagen ausstellen >> Stillstandzeiten?
 - b. Bremsprobe
 - c. Wagenmeisterkontrolle
 - d. Ggf. Bedarfsreparaturen
 - 2. Trassenpreise (Netz / EVU)
 - a. Grundpreise
 - b. Trassenproduktfaktor
 - c. Lastkomponente (Verschleißabhängig)
 - d. Lärmabhängig
 - 3. Traktionsenergie (Energie / EVU)
 - a. Grundpreise Bahnstrom-Lieferung
 - b. Vergütung zurückgespeiste Energie
 - c. Rabattregelung

Technische Universität Berlin Fachgebiet Schienenfahrzeuge

Nicht berücksichtigt

Produktivitätssteigerungen aus Prozessverbesserungen: Einfluss ist über die gesamte Logistikkette, Vorteile können nur über Verbesserungen im Gesamtprozess entstehen

• entscheidende Verkürzung der Umlaufzeiten (z.B. von 49h auf 47h)

Methode für LCC-Modell

Definition und Verwaltung von Rahmenszenarien:

- Referenzstrecke: Streckenparameter (Anteil Gleisbögen und Steigungen), entsprechender Trassenpreis und Zeitzone (Feststellung der Bahnstrompreise)
- Zugbildung (Zugverband N Wagen)
- Fahrgeschwindigkeit bzw. Fahrprofil (Berechnung Verbrauch + event. Rückspeisung)

ANHANG E

Die hier aufgeführten Förderprojekte sind in ihren jeweiligen Kategorien alphabetisch angeordnet. Ferner ist anzumerken, dass die erstellte Übersicht mit Stand 03.06.2013 keinerlei Anspruch auf Vollständigkeit erhebt, sondern lediglich aus den vorliegenden Informationen der Arbeitsgruppenmitglieder erstellt wurde.

(1) Einzelförderprojekte für den Schienengüterverkehr

a. In Deutschland

LfdNr.	Projektname	Träger	Laufzeit	Gesamt- budget (€)	Inhalt/ Zielsetzung	Projektpartner	Teilneh- mer aus TIS?
	Abgeschlosse	-	kte				
1	LZarG	ΤÜV	3 Jahre;	6,0 Mio.	_	DB AG;	Knorr-
		Rhein-			schaftlich nutzbarer	ConTraffic GmbH;	Bremse;
	(Leiser Zug	land	01.12.2007		Lösungen für lärm-	Vossloh Werke GmbH;	TU Berlin
	auf realem	(BMWi)	-		arme Technologien	Bombardier Transportati-	FG SFZ
	Gleis)		30.11.2010		mit guter Integrabi-	on;	
					lität in das Bahn-	Bochumer Verein Ver-	
					system	kehrstechnik GmbH;	
						GHH Radsatz GmbH;	
						DB Waggonbau Niesky	
						GmbH;	
						Faiveley Transport	
						GmbH;	
						Knorr-Bremse GmbH;	
						ContiTech GmbH;	
						Schrey & Veit GmbH;	
						Getzner Werkstoffe	
						GmbH;	
						Radsatzfabrik Ilsenburg	
						GmbH;	
						TU München Lehrstuhl	
						Verkehrswegebau;	
						TU Berlin FG SFZ;	
						TU Dresden Professur	
						Fahrzeugmodellierung	
						und -simulation	
2	InnoCoupler	ΤÜV	23.03.2009	325.000	Verbesserung der	DB Schenker Rail;	DB
		Rhein-	-		Wirtschaftlichkeit	Faiveley Transport;	Schenker
		land	30.04.2011		und Marktstellung	TU Berlin FG SFWBB;	Rail;

Technische Universität Berlin Fachgebiet Schienenfahrzeuge

		(BMWi)		des Schienengü-	TU Berlin FG SFZ	TU Berlin	
		(=)			terverkehrs mit		FG SFZ
					Hilfe einer weiter-		
					entwickelten und		
					optimierten Kupp-		
					lungstechnologie		
3	AkuSens	VDE/	3 Jahre;	3,7 Mio.	u.a. Integration	AUCOTEAM GmbH;	nein
	7	VDI-IT	o carno,	0,7 111101	eines Sensornetz-	Cideon GmbH;	
	(Sensornetz-	(BMBF)	01.06.2009		werkknotens in	RHe Microsystems;	
	werk-Knoten	(Bivibi)	-		Zwischenring am	Fraunhofer IZFP;	
	zur Bewer-		31.05.2012		Achslager eines	Wölfel GmbH;	
	tung von		01.00.2012		zweiachsigen Facs-	ITL Eisenbahn GmbH;	
	Konstruk-				Schüttgutwagens	Hörmann IMG GmbH;	
	tionselemen-				mit GG-	Siemens AG	
	ten in Fahr-				Bremsklötzen und	Siemens Ao	
	zeugen mit-				Speisung über		
	tels akusti-				Nabengenerator		
	scher Über-				Nabeligenerator		
	wachungs-						
	techniken)						
4	ZiM-Projekt	AiF Pro-	15.12.2010	175 000	Entwicklung ainer	TU Berlin FG SFZ;	TU Berlin
4	ABP		13.12.2010	175.000	•	ICM Chemnitz;	FG SFZ
	ADP	jekt GmbH	30.06.2012		automatisierten	· ·	rg srz
	(Automoti		30.06.2012		Bremsprobe im	AIS Dresden;	
	(Automati-	(BMWi)			Schienengüterver- kehr	M&P Dresden; CN-Consult	
	sche Brems- probe)				Keni	CN-Consult	
	Laufende Pro	iokto					
5	Innovations-	Land	3 Jahre	14,0	Erarbeitung res-	Fraunhofer IPK + IZM;	TU Berlin
	cluster MRO	Berlin/	(seit 2009)	Mio.		TU Berlin FG SFZ + FG	FG SFZ
	olusiei iiiko	Bran-	(3011 2003)	WIIO.		Luftfahrantriebe + IWF;	0 01 2
	("Mainte-	denburg,			ter MRO-Prozesse	Bundesanstalt für Materi-	
	nance, Re-	Fraunhof-			und Technologien	alforschung/-prüfung;	
	pair and	er-Ge-			sowie Etablierung	BTU Cottbus, Lehrstuhl	
	Overhaul in	sellschaft			in Region Berlin/	Konstruktion und Ferti-	
	Energie und	Jonathall			Brandenburg		
	Verkehr")				Dianuenburg	gung; Airbus Deutschland;	
	verkein)					Alstom Power Service;	
						•	
						Amovis; BSR Berliner Stadt-	
						reinigungsbetriebe;	
						BVG AG;	
						•	
						DB Mobility Fernverkehr; Fuss EMV;	
						·	
						HVLE;	
						Hegenscheidt-MFD;	
						Heidelberger Druckma-	
					25 / 41	schinen;	

Technische Universität Berlin Fachgebiet Schienenfahrzeuge

			T		T	[<u> </u>	
						MAN-Turbo;	
						MTU Maintenance;	
						Rolls-Royce Deutschland;	
						Siemens Energy Sector;	
						Schweizer Südostbahn	
						AG	
6	CargoCBM	TÜV	01.01.2010	2 5 Mio	Erhöhung der Zu-	TU Berlin FG SFZ;	TU Berlin
O	Cargocolvi		01.01.2010	2,3 1/110.	_		
		Rhein-	- -		verlässigkeit und	Eckelmann AG;	FG SFZ
	(Zustands-	land	30.09.2013		Verfügbarkeit von	Harting KGaA;	
	orientierte In-	(BMWi)			Güterwagen mittels	PC-Soft GmbH;	
	standhaltung				Einsatz von Senso-	Vattenfall;	
	im Schienen-				ren zur Zustands-	Wascosa AG;	
	güterverkehr)				überwachung, so	Lenord + Bauer	
	,				Optimierung der		
					Instandhaltungs-		
_	7:84 D	A:E 5	0.1-1	4 4 5 41	prozesse	TUD. 1. FO 057	TILD "
7	ZiM-Projekt	AiF Pro-	2 Jahre;	1,1 Mio.	Entwicklung einer	TU Berlin FG SFZ;	TU Berlin
	ASK	jekt				ICM Chemnitz;	FG SFZ
		GmbH	01.11.2012		erkabine für den	Fahrzeugwerke Mirau-	
	(Entwicklung	(BMWi)	-		Schienengüterver-	straße;	
	einer auf-		31.10.2013		kehr; Wendezugbe-	SOBA tec;	
	steckbaren				trieb im Schienen-	XIO Design;	
	Steuerkabine				güterverkehr	Catton theimeg	
	für den				J	Ŭ	
	Schienengü-						
	terverkehr)						
8	LäGIV	TÜV	01.11.2010	14,9	Entwicklung ver-	DB Systemtechnik;	DB Sys-
O	Laciv	Rhein-	01.11.2010	Mio.	besserter Verbund-	Becorit GmbH;	tem-
	/1 #mmmm des		-				
	(Lärmredu-	land	31.03.2014		stoff-Bremsklotz-	Bremskerl Reibbelag-	technik
	zierter Gü-	(BMWi)				werke Emmerling GmbH;	
	terverkehr				Lärmreduktion im	Federal Mogul Friction	
	durch inno-				Schienengüterver-	Products GmbH;	
	vative V-				kehr	Honeywell Bremsbelag	
	BKS)					GmbH;	
						TMD Friction GmbH	
9	MoSe	VDE/	2013	4,1 Mio.	Entwicklung von	Deutzer Techn. Kohle;	nein
		VDI-IT	_		Cloud-gestützten	Gesellschaft für Maschi-	
	(Mobile Sen-	(BMBF)	2015		Funksensorsyste-	nendiagnose;	
	sorsysteme	(= ··· -·)			men zur Instand-	imc Messsysteme;	
	zur zustand-				haltung von Schie-	Lust Hybrid-Technik;	
						•	
	basierten				nenfahrzeugen	Fraunhofer IZM;	
	Wartung)					Berlin Center of Advan-	
					_	ced Packaging (BeCAP)	
10	UFOPLAN	BMU	01.11.2012	440.000		TU Berlin FG SFZ;	TU Berlin
	2012		-		effektiven Minde-	IGES;	FG SFZ
			29.02.2016		rung des Schienen-	IVE mbH;	
					güterverkehrslärms	Universität Würzburg	
			l	l	I	<u> </u>	

Technische Universität Berlin Fachgebiet Schienenfahrzeuge

11	ESZüG	VDE/	3 Jahre;	1,9 Mio.	Entwicklung und	Cognidata GmbH;	BASF;
	(Energieau-	VDI-IT			Erprobung eines	BASF;	TU Berlin
	tarke Senso-	(BMBF)	01.03.2013		Konzepts zur Nut-	Fraunhofer LBF;	FG SFZ
	rik zur Zu-		-		zung energieautar-	TU Berlin FG SFZ;	
	standsüber-		29.02.2016		ker Sensorik in der	invent GmbH;	
	wachung von				Zustandsüberwa-	The Smart System Soluti-	
	Güterwagen)				chung von Güter-	on GmbH	
					wagen		

b. In der EU

LfdNr.	Projektname	Träger	Laufzeit	Gesamt- budget (€)	Inhalt/ Zielsetzung	Projektpartner	Teilneh- mer aus TIS?					
	Abgeschlossene Projekte											
1	VEL-Wagon	EU	2 Jahre;	1,1 Mio.	Konstruktion eines	TU Berlin FG SFWBB;	TU Berlin					
		(7th			längeren und effizi-	TU Berlin FG SFZ;	FG SFZ					
	(Versatile,	Frame-	01.12.2010		enteren Wagons	KTH Stockholm (Train						
	Efficient and	work Pro-	-		(mit höherer Achs-	Traffic Group);						
	Longer Wag-	gramme)	31.12.2012		last und niedrigerer	University of Žilina;						
	on for Euro-				Ladehöhe) zur	Tatravagónka a.s. Poprad						
	pean				Kapazitätssteige-							
	Transpor-				rung des Güterwa-							
	tation)				genverkehrs							
	Laufende Pro	jekte										
2	EURAXLES	EU	3 Jahre;	4,8 Mio.	Entwicklung eines	Unife;	DB					
		(7th			Konzeptansatzes	Alstom;						
		Frame-	01.11.2010		für Design, Produk-	Ansaldo Breda;						
		work Pro-	-		tion und Wartung	Bonatrans;						
		gramme)	31.10.2013		von Radsatzwellen	CAF;						
					zur Minimierung	DB;						
					des Ermüdungs-	ENSCL;						
					bruchrisikos	Fraunhofer IWM;						
						GHH Radsatz GmbH;						
						Kurt Salmon;						
						ULTRASEN;						
						Lucchini RS S.p.a;						
						Mer Mec S.p.a;						
						Metalogic;						
						Politecnico di Milano;						
						Radsatzfabrik Ilsenburg						
						GmbH;						
						RENFE;						
						SNCF;						

Technische Universität Berlin Fachgebiet Schienenfahrzeuge

		ı	I				
						Universidad Carlos III	
						Madrid;	
						UIC;	
						UNIUD;	
						Valdunes	
3	Near2	EU	2 Jahre;	887.000		C.E.R.T.H / H.I.T;	TU Berlin
		(7th			schienenfahrzeug-	EURNEX e.V.;	FG SFZ
	(Network of	Frame-	01.12.2012		bezogenen For-	ZTG (TU Berlin);	
	European –	work Pro-	_		schungsnetzwerks	TU Berlin FG SFZ;	
	Asian Rail		30.11.2014		_	·	
		gramme)	30.11.2014		entlang der Eurasi-	TU Berlin FG SFWBB;	
	Research				schen Landbrücke	Czech Technical Universi-	
	Capacities)				zur Stärkung und	ty in Prague;	
					Förderung der	Vilnius Gediminas Tech-	
					Entwicklung des	nical University;	
					Schienenverkehrs	Moscow State University	
						•	
					zwischen Europa	of Railway Engineering;	
					und Asien mittels	A-Trans LLC;	
					Analyse der derzei-	Petersburg State	
					tigen Situation und	Transport University;	
					Identifizierung von	Tongji University;	
					_	•	
					Forschungslücken,	EIRC Consulting Private	
					Bedürfnissen und	Limited;	
					Prioritäten	DRTI Donetsk;	
						Instytut Kolejnictwa War-	
						sawa;	
						TrainOSE S.A	
4	SUSTRAIL	EU	4 Jahre;	O 2 Mio	Kombinierte Ver-	u.a: Consorzio Train;	TU Berlin
4	SUSTRAIL		4 Janre;	9,3 Mio.		,	
		(7th			besserung des	Manchester Metropolitan	FG SFZ
	(Sustainable	Frame-	01.06.2011		Güterwagens und	University;	
	Freight Rail-	work Pro-	-		der Gleiskompo-	University of Sheffield;	
	way)	gramme)	31.05.2015		nenten in einem	Politecnico Di Milano;	
	,	9	0110012010		ganzheitlichen	KTH Stockholm;	
					•	·	
					Ansatz zur Erzie-	Universidad Politecnica	
					lung höherer Zuver-	de Madrid;	
					lässigkeit und Per-	University of Newcastle;	
					formance	Holding Bulgarian State	
						Railways EAD;	
						Unife;	
						,	
						Tata Steel UK Limited;	
						Lulea Tekniska Universi-	
						tet;	
						Lucchini Rs Spa;	
						UIC;	
						·	
						Petersburg State	
						Transport University;	
						Georgian Technical Uni-	
						versity;	
		l	l	1	I.		

						KES Keschwari Electronic	
						Systems GmbH & Co.	
						KG;	
						TU Berlin FG SFZ;	
5	ViWaS	EU	3 Jahre;	4,2 Mio.	Entwicklung eines	HaCon Ingenieurgesell-	SBB
		(7th			zukunftsfähigen	schaft mbH;	Cargo
	(Viable Wag-	Frame-	01.09.2012		Systems für den	Bentheimer Eisenbahn	
	gonload	work Pro-	-		Einzelwagenver-	AG;	
	Production	gramme)	31.08.2015		kehr angepasst an	Nordhorn;	
	Schemes)				die Anforderungen	ETH Zürich;	
					der modernen	Eureka Navigation Soluti-	
					Logistik (u.a. Effi-	ons AG;	
					zienzsteigerung bei	Fret SNCF;	
					Bedienung der	Consorzio IB Innovation;	
					"Letzten Meile",	NEWOPERA Aisbl;	
					kürzere Transport-	SBB Cargo AG;	
					zeiten, höherer	TU Berlin FG SFWBB;	
					Nutzungsgrad	Wascosa	
					Rollmaterial)		

(2) Plattform-Projekte mit Bezug zum Schienengüterverkehr

a. In Deutschland

LfdNr.	Projektname	Träger	Laufzeit	Gesamt- budget (€)	Inhalt/ Zielsetzung	Projektpartner	Teilneh- mer aus TIS?
	Laufende Pro	jekte					
1	ERI	Schirm-	Seit März	unbe-	Offene Kommuni-	Alstom Transport;	DB;
		herr-	2011	kannt	kationsplattform zur	Ballard Power Systems;	Knorr-
	(Eco Rail	schaft			Umsetzung der	Berliner Verkehrsbetriebe	Bremse
	Innovation)	durch			Vision "Null Emis-	(BVG);	
		BMBF;			sion" bei Schienen-	Bombardier Transportati-	
		Koordi-			fahrzeugen und	on GmbH;	
		nation			Infrastruktur, Erar-	DB AG;	
		durch DB			beitung nachhalti-	DLR;	
					ger Entwicklungs-	Enertag AG;	
					konzepte für Pro-	ESG Elektroniksystem-	
					dukte und Trans-	und Logistik Gmmbh;	
					portangebote des	FH Brandenburg;	
					Systems Bahn	Knorr-Bremse;	
						Siemens AG;	

Bericht 01/2013

Stand: 13. März 201413.03.2014

Technische Universität Berlin Fachgebiet Schienenfahrzeuge

			Solon Energy GmbH;	
			Tognum AG;	
			VDB e.V.;	
			Voith Turbo GmbH & Co.	
			KG;	
			Vossloh AG	

b. In der EU

LfdNr.	Projektname	Träger	Laufzeit	Gesamt- budget (€)	Inhalt/ Zielsetzung	Projektpartner	Teilneh- mer aus TIS?					
	Laufende Projekte											
1	DynoTRAIN	EU (7th Frame- work Pro- gramme)	01.06.2009	5,56 Mio.	Zeit- und Kosten- reduktion der Zu- lassung von Schie- nenfahrzeugen durch gezielten Einsatz von Simu- lationstechnik	Unife; Alma Consulting Group; Alstom; Ansaldo Breda; Bombardier Transportation; CAF; CEIT; DB AG; INRETS; Network Rail; Manchester Metropolitan University; KTH Stockholm; Politecnico di Milano; RSSB; Rèseau Ferré de France; Sapienza Universita de Roma; Siemens AG; SNCF; INECO-TIFSA; TU Berlin FG SFZ; Trenitalia; UIC	TU Berlin FG SFZ, DB					
	Zukünftige Pr											
2	Shift2Rail in Planung	Joint Technology Initiative (JTI)	6 - 7 Jahre	800 Mio. – 1 Mrd.	5 Kernpunkte, u.a. Entwicklung innovativer Technologien für einen nachhaltigen und attraktiven europäi-	Alstom; AnsaldoBreda; Bombardier; CAF; Faiveley Transport Invensys Rail;	Knorr- Bremse					

Bericht 01/2013

Stand: 13. März 201413.03.2014

Technische Universität Berlin Fachgebiet Schienenfahrzeuge

					schen Güterver-	Knorr-Bremse;	
					kehr	Network Rail;	
						Siemens AG;	
						Strukton Rail;	
						Talgo;	
						Thales;	
						Vossloh	
3	SWIFLY	EU	2 Jahre;	3,0 Mio.	Entwicklung einer	CLOSER/Lindholmen	TU Berlin
	Green	(TEN-T	01.01.2014		Toolbox, die die	Science Park AB; Swe-	FG SFZ
		2012	-		besten Technolo-	dish Transport Admin-	
	(Sweden to	Annual	31.12.2015		gien, Methoden	istration;	
	Italy Freight	Call)			und Mittel zur	TU Berlin FG SFZ;	
	Transports				nachhaltigen Ver-	Brenner Basistunnel BBT	
	and Logistics				besserung der	SE;	
	Green Corri-				Umweltfreund-	Port of Trelleborg;	
	dor)				lichkeit des Güter-	Hafen Hamburg Market-	
					verkehrs auf den	ing e.V.;	
	Projekt bean-				Nord-Süd-Korri-	Interporto Bologna	
	tragt				doren in Europa	(Stand 07.01.2013)	