

© ITSS practice group page 1 of 103

_

ITSS practice group

ITSS
Standard

Specification

ITSS Interface IF1
(Telematics Application – Customer System)

Version 1.2 final

© ITSS practice group page 2 of 103

_

Copyright Notice

This document is the copyright ©2017, 2018 of the ITSS practice group. All rights reserved.

This document and translations of it may be copied and furnished to others, and derivative

works that comment on or otherwise explain it or assist in its implementation may be prepared,

copied, published and distributed, in whole or in part, without restriction of any kind, provided

that the above copyright notice and this paragraph are included on all such copies and

derivative works. However, this document itself may not be modified in any way, such as by

removing the copyright notice or references to the ITSS practice group or other organizations,

except as required to translate it into languages other than English.

This document and the information contained herein is provided on an "AS IS" basis and THE

CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF

ANY) AND THE ITSS PRACICE GROUP DISCLAIM ALL WARRANTIES, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE

INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED

WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN

NO EVENT SHALL THE ITSS PRACTICE GROUP OR ANY OF THEIR CONTRIBUTORS BE

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS INFORMATION, EVEN IF ADVISED OF

THE POSSIBILITY OF SUCH DAMAGE.

Without limiting the foregoing, the ITSS practice group makes no warranty that:

 the information will meet your requirements

 the information will be uninterrupted, timely, secure or error-free

 the results that may be obtained from the use of this information will be effective,

accurate or reliable

 the quality of the information will meet your expectations

 any errors in the information will be corrected.

© ITSS practice group page 3 of 103

_

The information made available within this document:

 could include technical or other mistakes, inaccuracies or typographical errors

 may be out of date and the ITSS practice group and its contributors make no

commitment to update such materials

 is not intended to be used in safety relevant applications

 is not approved for use in safety-relevant applications

In no event shall the ITSS practice group or its contributors be liable to you or any third parties

for any special, punitive, incidental, indirect or consequential damages of any kind, or any

damages whatsoever, including, without limitation, those resulting from loss of use, data or

profits, whether or not ITSS practice group or its contributors has been advised of the possibility

of such damages, and on any theory of liability, arising out of or in connection with the use of

the information contained herein.

The telematics application provides telematics data to the customer ERP system; the customer

ERP system itself is responsible for the information exchange between the entities as described

in the TAF TSI. Therefore, the regulations given in the TAF TSI are not relevant for the ITSS

interface IF1 standard specification. The information exchange in compliance with regulation

TAF TSI is in the sole responsibility of the customer.

The information provided herein can be used to communicate over different communication

links and technologies. Depending on the provider and tariff additional communication costs

may occur for each communication link.

Preface

ITSS Interface IF1 describes the data exchange between a Telematics Application and any

customer system, as shown in “Diagram 1: Generic System Architecture” marked with the ‘1’ in

a red circle.

© ITSS practice group page 4 of 103

_

Content

Copyright Notice .. 2

Preface .. 3

System Architecture Overview ... 6

Process description of pairing telematics devices with transport devices 8

Push-Notification (Event) reception ... 9

Strategy for missing data ... 10

Versioning of the REST web services .. 10

Request last known position .. 12

Assembled Notification .. 15

Notification about the last position ... 19

Request positions for a time interval .. 22

Request the mileage of a transport device... 25

Notification about the mileage .. 28

Request the loading state .. 30

Notification about the loading state .. 33

Request all known devices .. 36

Request sensor values for a time interval .. 38

Notification about one or more new sensor values .. 41

Request last known geofencing state .. 44

Request geofence events for a time interval .. 50

Request the movement state ... 54

Notification about the movement state ... 57

Notification of a detected derailment .. 60

Notification of a detected shock ... 63

Geofence Create ... 66

Geofence Update ... 71

Geofence Read .. 73

Geofence Delete .. 77

Geofence Read All ... 79

Geofence Delete All ... 82

Geofence Create Assignment .. 83

Geofence Read Assignments .. 85

Geofence Delete Assignment .. 87

© ITSS practice group page 5 of 103

_

Geofence Delete All Assignments ... 89

Webservice Technology ... 91

Webservice methods and invocation ... 91

Error concept ... 92

Abbreviations ... 96

Glossary: .. 97

Change log .. 103

© ITSS practice group page 6 of 103

_

System Architecture Overview

Diagram 1: Generic System Architecture

Interface IF1:

Every system taking part in the communication over ITSS interface IF1 has a unique system ID

and a user and password for basic authentication via HTTP headers. The customer system (e.g.

customer ERP) has a customer system ID and user and password for basic authentication. The

Telematics Application in turns has a telematics system ID and user and password for basic

authentication.

Both system IDs should be different and user and password selected and changed based on a

secure rule set but the standard imposes no restriction on the IDs and user and password for

basic authentication. Furthermore, this standard does not provide any rules for the generation of

those IDs and passwords. It is the sole responsibility of the communication parties to choose

system ID and user and passwords in a secure manner.

The only security regulation this standard defines is that the communication parties need to

agree on those system IDs and user and passwords and that the system ID and user and

password need to be validated by both systems prior to each data exchange. If a security

violation is detected, e.g. the authentication header does not match for the given system ID or

the system ID is unknown, the receiving system has to discard all received data silently. A

security violation warning might be raised by the detecting system but this is out of the scope of

this standard.

© ITSS practice group page 7 of 103

_

Although it is advisable to make those IDs unique, no restrictions are given from the standard. It

is the responsibility of the communication parties to manage the IDs for all their communication

requirements.

The standard does not provide any means for the allocation of unique system IDs.

Communication parties for interface IF1:

ITSS Interface IF1 describes the communication between a telematics application and a

customer system.

A telematics application can communicate with more than one customer system and a customer

system can communicate to multiple telematics applications.

The customer is able to connect with as many systems to the telematics application as required,

e.g. customer ERP, customer logistics, customer CRM. The following sections refer to all those

systems in general as the customer system.

© ITSS practice group page 8 of 103

_

Process description of pairing telematics devices with transport devices

The customers have arbitrary requirements with respect to where the pairing (coupling) of the

telematics devices with the transport devices (e.g. wagons) is done. Some customers require

that the transport device ID is not disclosed to the telematics application provider, this requires

that the pairing is maintained in the customer system. Other customers leave the pairing to the

telematics application provider accessing the telematics data either by transport device ID or

telematics device ID.

This standard specification supports both approaches of pairing telematics devices with

transport devices; either pairing is done in the customer system (option A) or pairing is done in

the telematics application (option B).

Depending of which option has been selected in the mutual agreement between customer and

telematics application provider before implementation of the interface, either the customer

system is responsible of maintaining the correct matching of telematics device ID and transport

device ID (option A) or the telematics application (option B).

Option A:

Requests from the customer system to the telematics application must include the telematics

device ID for proper identification. Responses and events from the telematics application to the

customer system must also include the telematics device ID.

Option B:

For proper object identification for option B, requests from the customer system to the

telematics application must include either the transport device ID (preferred) or the matching

telematics device ID, if the customer system has gained knowledge of the proper pairing.

Responses from the telematics application to the customer system must include the ID as

provided by the calling system. This can either be the transport device ID or the telematics

device ID. The telematics application can provide both IDs in the response, using its internal

matching to find the other ID. This functionality is not required by the standard but

recommended to create uniform information in responses and events. Events issued from the

telematics application to the customer system must always include the telematics device ID and

may also include the transport device ID to give the customer system all information for a proper

identification of the object causing the event.

© ITSS practice group page 9 of 103

_

Push-Notification (Event) reception

The telematics application can notify the Customer System via events about new values or

problems connected to a transport device. This notification uses REST over HTTP and

communicates with the Customer System using a dedicated customer specific URI. The

communicating parties, that is, the telematics application owner and the Customer System

owner, need to agree on the URI for those event notifications. For security the same principles

as described in the chapter Data security are applied, that is, the telematics application uses the

Customer System ID and user and password for basic authentication as agreed upon by both

communicating parties.

If the telematics application does not know an event notification URI for a given System ID no

events will be delivered.

The URI construction must include the part “itss” and follow the versioning as described in the

chapter Versioning of the REST web services. Therefore, in all event descriptions for this

document an URI in the following form is used:

 https://{customerURI}/itss/1.2/shockDetected

The part {customerURI} is the part that must be agreed upon by both communicating parties. All

other parts of the URI are regulated by this specification.

A notification happens whenever the telematics application creates or receives new information

from a telematics device or a sensor. If a customerURI is known to the telematics application

but the delivery of a notification fails due to any possible reason, the telematics application will

store the notification for at least 24 hours. As soon as the connection becomes available again,

all buffered notifications will be transmitted to the customer system.

Notifications older than 24 hours can be silently removed from the buffer by the telematics

application and will not be transmitted to the customer system. The data, e.g. sensor values, will

still be stored by the telematics application and can be explicitly requested by the customer

system.

Notifications from the telematics application to the customer system cannot be stopped by the

customer system. Once the customerURI is known to the telematics application any notification

for the specific customer system is buffered and pushed to this system.

It can be mutually agreed between the communicating partners, which event messages are to

be sent as push notifications.

© ITSS practice group page 10 of 103

_

Strategy for missing data

If the telematics application is not able to deliver all data a request contains and the value is

marked as not required (required: false), the telematics application does not include the element

concerned and tries to satisfy the request or event with as much data as possible. A prominent

example for a case of missing data is the GNSS position connected to an event. If the

telematics device is not delivering this position to the telematics application the telematics

application still delivers the event to the Customer System without the “GNSS_Position” tag.

The result of this strategy is that requests might be answered with a valid response even if this

response does not contain any relevant information, e.g. lastPosition request without known

GNSS position of the transport device. It is not allowed to indicate this condition with HTTP error

codes, e.g. 204 (no content).

Versioning of the REST web services

If the specification (API or parameters) for a web service changes in a future version this will be

represented by a part of the URI, which is used to call the respective service.

https://telematik.xyz.com/itss/1.0/lastPosition?ITSS_TransportDeviceID=3180%204674%20%20001-

1&ITSS_CustomerSystemID=custSys4711&ITSS_PassPhrase=open%20sesame

The version number is placed between the base URI of the specific server and the name of the

webservice. Moreover, the version number used in the URI corresponds directly to the version

number of the specification. Hence, the full API is accessible via the versioned requests even if

a specific request/response did not change from one version to another. The following example

should clarify the API versioning:

From version 1.0 to version 1.1 the specification of the lastPosition changed. The specification

for mileageTimeInterval did not change. Both versions would be accessible via:

Version 1.0 (request parameter and response according to ITSS specification V1.0):

https://telematik.xyz.com/itss/1.0/lastPosition?ITSS_TransportDeviceID=3180%204674%20%200

01-1&ITSS_CustomerSystemID=custSys4711&ITSS_PassPhrase=open%20sesame

https://telematik.xyz.com/itss/request/1.0/mileage?ITSS_TransportDeviceID=3180%204674%200

01-1&fromUTCtimestamp=1436700000&toUTCtimestamp=1436792541&

ITSS_CustomerSystemID=custSys4711&ITSS_PassPhrase=open%20sesame

Version 1.1 (request parameter and response according to ITSS specification V1.1):

https://telematik.xyz.com/itss/1.1/lastPosition?ITSS_TransportDeviceID=3180%204674%20%200

01-1&ITSS_CustomerSystemID=custSys4711&ITSS_PassPhrase=open%20sesame

© ITSS practice group page 11 of 103

_

https://telematik.xyz.com/itss/request/1.1/mileage?ITSS_TransportDeviceID=3180%204674%200

01-1&fromUTCtimestamp=1436700000&toUTCtimestamp=1436792541&

ITSS_CustomerSystemID=custSys4711&ITSS_PassPhrase=open%20sesame

Version 1.2 (request parameter and response according to ITSS specification V1.2):

https://telematik.xyz.com/itss/1.2/lastPosition?ITSS_TransportDeviceID=3180%204674%20%200

01-1&ITSS_CustomerSystemID=custSys4711

https://telematik.xyz.com/itss/request/1.2/mileage?ITSS_TransportDeviceID=3180%204674%200

01-1&fromUTCtimestamp=1436700000&toUTCtimestamp=1436792541&

ITSS_CustomerSystemID=custSys4711

although the request and response for the mileage calls are identical in both cases.

If the telematics application supports multiple versions of the ITSS interface IF1 a customer

system can freely use requests across those supported versions.

As the telematics application does not provide a version request the telematics

applicationcommunicating parties shall agree on the versions used for the respective application

themselves.

Released versions

Version 1.0: First release of the ITSS specification IF1

Version 1.1: Updated release of the ITSS specification IF1 with additional requests and

notifications. For details see section Change log.

Version 1.2: Removed the pass phrases from the communication between telematics

application and customer system. Instead, added basic authentication for security

as a mandatory feature. Added assembled notification and geofence

configuration. More details at section Change log.

© ITSS practice group page 12 of 103

_

Request last known position

1. Description

The customer wants to get information about the last known position (geo coordinates) of a

specific transport device.

2. Method (Request / Response)

The customer system requests the last known position of a transport device identified by the

• ITSS_TelematicsDeviceID or ITSS_TransportDeviceID

The telematics application processes the request and responds with the required information.

Access method: Synchronous

lastPosition

 ITSS_TelematicsDeviceID or ITSS_TransportDeviceID

 ITSS_CustomerSystemID

lastPosition response

 ITSS_TelematicsDeviceID or ITSS_TransportDeviceID

 GNSS_Position

 ITSS_LocationInfo (optional)

 ITSS_TelematicsApplicationID

ITSS_Request Telematics

Application

Customer

System

Telematics

Application

Customer

System
ITSS_Response

© ITSS practice group page 13 of 103

_

JSON schema and example:

Request

HTTP Type GET

MIME Type Text plain

Request

Path

https://telematik.xyz.com/itss/1.2/lastPosition?ITSS_TransportDeviceID={deviceId}&

ITSS_CustomerSystemID={custId}

or

https://telematik.xyz.com/itss/1.2/lastPosition?ITSS_TelematicsDeviceID={deviceId}&

ITSS_CustomerSystemID={custId}

Response on success

HTTP Status 200

MIME Type application/json

BODY:

json Schema

{

 “title”: “lastPosition”,

 "$schema": "http://json-schema.org/draft-04/schema#",

 “type”:“object”,

 “properties”:

 {

 “ITSS_TransportDeviceID”: { "type": "string", required:false },

 “ITSS_TelematicsDeviceID”: { "type": "string", required:true },

 “GNSS_Position” :

 {

 “type”: “object”, required: false

 "properties":

 {

 "GNSS_UTCtimestamp ": { "type": "number", required:true },

 ”GNSS_Latitude": { "type": "number", required:true },

 "GNSS_Longitude ": { "type": "number", required:true },

 "GNSS_Speed_kmph ": { "type": "number", required:false },

 "GNSS_Heading_deg ": { "type": "number", required:false },

 “GNSS_Altitude “: { “type”: “number”, required:false },

 "GNSS_Accuracy ": { "type": "number", required:false },

 “ITSS_LocationInfo”: { "type": "object", required:false,

 "properties":

 {

 “Location_ZIP”: { "type": "string", required: false },

 “Location_City”: { "type": "string", required: false },

 “Location_Street”: { "type": "string", required: false },

 “Location_Description”: { "type": "string", required: false },

 “Location_Country”: { "type": "string", required: false },

 “Location_UIC_Code”: { "type": "string", required: false },

 “Location_GeoZone”: { "type": "string", required: false }

 }

 }
 },
 “ITSS_TelematicsApplicationID”: { "type": "string", required:true }

© ITSS practice group page 14 of 103

_

 }
}

BODY

example

{
 “ITSS_TransportDeviceID”: “3180 4674 001-1”,
 “ITSS_TelematicsDeviceID”: “MANUF000000751”,
 “GNSS_Position” :
 {

 “GNSS_UTCtimestamp”: 1436712345.154,
 “GNSS_Latitude”: 52.264304,
 “GNSS_Longitude”: 10.525537,
 “GNSS_Speed_kmph”: 48.87,
 “GNSS_Heading_deg”: 350.1,
 “ITSS_LocationInfo”: {

 “Location_ZIP”: 38126,

 “Location_City”: “Braunschweig”,

 “Location_Street“: “Berliner Platz”,

 “Location_Description": “Braunschweig Hbf”,

 “Location_Country”: “Germany”,

 “Location_UIC_Code”: “051”,

 “Location_GeoZone”: “DE”

 }

},

 “ITSS_TelematicsApplicationID”: “TeleApp0815”

}

Response on request error

HTTP Status 400

MIME Type application/json

BODY: JSON formatted error description see section Error concept

Response on undefined error

HTTP Status All other HTTP Status codes

MIME Type text/plain

BODY: {error description}

© ITSS practice group page 15 of 103

_

Assembled Notification

1. Description

The customer expects to be notified of any kind of event for a transport device / telematics

device, where several notifications are caused by one single event (e.g. a new geoposition)

This notification allows to provide all described notifications to be assembled and pushed to the

customer system in one single post.

Additional detailed information can be found in the description of the single notifications that are

included in this assembled notification.

2. Method (Event based notification)

The telematics application sends an event notification containing all relevant information that

has been triggered by the single event.

Access method: Event message

assembledNotification:

 ITSS_TelematicsDeviceID

 ITSS_TransportDeviceID (optional)

 UTCTimeStamp

 GNSS_Position (optional)

 mileage (optional)

 loadingState (optional)

 payload (optional)

 ITSS_SensorValueList (optional)

 ITSS_GeofenceEventList (optional)

 ITSS_MovementState (optional)

 derailment_triggered (optional)

 X-Axis_triggered, Y-Axis_triggered, Z-Axis_triggered (optional)

 X-Axis, Y-Axis, Z-Axis (optional)

 ITSS_TelematicsApplicationID

Telematics

Application

Customer

System

ITSS_Event

© ITSS practice group page 16 of 103

_

JSON schema and example:

Request

HTTP Type POST

MIME Type application/json

Request
Path

https://{customerURI}/itss/1.2/assembledNotification

BODY:

json Schema

{

 "title": "assembledNotification",

 "$schema": "http://json-schema.org/draft-04/schema#",

 "type":"object",

 "properties":

 {

 "ITSS_TransportDeviceID": { "type": "string", required:false },

 "ITSS_TelematicsDeviceID": { "type": "string", required:true },

 "UTCtimestamp": { “type”: “number”, required:true },

 "GNSS_Position" :

 {

 "type": "object", required: false

 "properties":

 {

 "GNSS_UTCtimestamp": { "type": "number", required:true },

 "GNSS_Latitude": { "type": "number", required:true },

 "GNSS_Longitude": { "type": "number", required:true },

 "GNSS_Speed_kmph": { "type": "number", required:false },

 "GNSS_Heading_deg": { "type": "number", required:false },

 "GNSS_Altitude": { "type": "number", required:false },

 "GNSS_Accuracy": { "type": "number", required:false },

 "ITSS_LocationInfo": { "type": "object", required:false,

 "properties":

 {

 "Location_ZIP": { "type": "string", required: false },

 "Location_City": { "type": "string", required: false },

 "Location_Street": { "type": "string", required: false },

 "Location_Description": { "type": "string", required: false },

 "Location_Country": { "type": "string", required: false },

 "Location_UIC_Code": { "type": "string", required: false },

© ITSS practice group page 17 of 103

_

 "Location_GeoZone": { "type": "string", required: false }

 }

 }

 },

 "mileage": { "type": "number", required:false},

 "loadingState": { "type": "string", required: false},

 "payload": { “type”: “number”, required: false},

 "ITSS_SensorValueList" : { "type": "array", required:false }

 {

 "ITSS_SensorValue": { "type": "object", required: false }

 "properties":

 {

 "SamplingUTCTimestamp": { "type": "number", required: true },

 "ITSS_SensorId": { "type": "string", required: true },

 "Value": { "type": "float", required: true },

 "ITSS_SensorType": { "type": "string", required: true },

 "ITSS_SensorPosition": { "type": "string", required: true }

 }

 },

 "ITSS_GeofenceEventList": {"type": "array", required: false,
 "items":
 {
 "type": "object", required: false
 "properties":
 {
 "UTCtimestamp": { "type": "number", required: true },
 "ITSS_Geofence"
 {
 "type": "object", required: true,
 "properties":
 {
 "GeofenceID": { "type": "string", required: true },
 "GeofenceName": { "type": "string", required: false }
 }
 }
 "ITSS_GeofenceEventTrigger": { "type": "string", required: true }
 }
 }
 },

 "ITSS_MovementState": { "type": "string", required: false },

 "derailment_triggered": { "type": "boolean", required: false },

 "X-Axis_triggered": { "type": "boolean", required: false },

 "Y-Axis_triggered": { "type": "boolean", required: false },

© ITSS practice group page 18 of 103

_

 "Z-Axis_triggered": { "type": "boolean", required: false },

 "X-Axis": { "type": "number", required: false },

 "Y-Axis": { "type": "number", required: false },

 "Z-Axis": { "type": "number", required: false },

 "ITSS_TelematicsApplicationID": { "type": "string", required:true}

 }

}

BODY

example

{
 “ITSS_TransportDeviceID”: “3180 4674 001-1”,
 “ITSS_TelematicsDeviceID”: “MANUF000000751”,
 “UTCtimestamp”: 1436712339.124,
 “GNSS_Position” :
 {

 “GNSS_UTCtimestamp”: 1436712345.154,
 “GNSS_Latitude”: 52.264304,
 “GNSS_Longitude”: 10.525537,
 “GNSS_Speed_kmph”: 48.87,
 “GNSS_Heading_deg”: 350.1,
 “ITSS_LocationInfo”: {

 “Location_ZIP”: 38126,

 “Location_City”: “Braunschweig”,

 “Location_Street“: “Berliner Platz”,

 “Location_Description": “Braunschweig Hbf”,

 “Location_Country”: “Germany”,

 “Location_UIC_Code”: “051”,

 “Location_GeoZone”: “DE”

 }

},

“derailment_triggered”: true

 “ITSS_TelematicsApplicationID”: “TeleApp0815”

}

Response on success

HTTP Status 201

MIME Type Text plain

Response on undefined error

HTTP Status All other HTTP Status codes

MIME Type text/plain

BODY: {error description}

© ITSS practice group page 19 of 103

_

Notification about the last position

1. Description

The customer expects to be notified of a new known position of a transport device.

This information is provided only for diagnostic purposes. At no time, it shall be used to derive

safety related information or actions.

2. Method (Event based notification)

The telematics application sends an event notification containing the new position as a

GNSS_Position. If the transport device is in motion, the transmitted GNSS_Position may differ

from the real position of the transport device when the customer system receives this

notification.

Access method: Event message

lastPosition

 ITSS_TelematicsDeviceID

 ITSS_TransportDeviceID (optional)

 GNSS_Position

 ITSS_LocationInfo (optional)

 ITSS_TelematicsApplicationID

JSON schema and example:

Request

HTTP Type POST

MIME Type application/json

Request
Path

https://{customerURI}/itss/1.2/lastPosition

BODY:

json Schema

{
 “title”: “lastPosition”,
 "$schema": "http://json-schema.org/draft-04/schema#",
 “type”:“object”,
 “properties”:

Telematics

Application

Customer

System

ITSS_Event

© ITSS practice group page 20 of 103

_

 {
 “ITSS_TransportDeviceID”: { "type": "string", required:false },
 “ITSS_TelematicsDeviceID”: { "type": "string", required:true },
 “GNSS_Position” :
 {
 “type”: “object”, required: false
 "properties":
 {
 "GNSS_UTCtimestamp ": { "type": "number", required:true },
 ”GNSS_Latitude": { "type": "number", required:true },
 "GNSS_Longitude ": { "type": "number", required:true },
 "GNSS_Speed_kmph ": { "type": "number", required:false },
 "GNSS_Heading_deg ": { "type": "number", required:false },
 “GNSS_Altitude “: { “type”: “number”, required:false },
 "GNSS_Accuracy ": { "type": "number", required:false },
 “ITSS_LocationInfo”: { "type": "object", required:false,
 "properties":
 {
 “Location_ZIP”: { "type": "string", required: false },
 “Location_City”: { "type": "string", required: false },
 “Location_Street”: { "type": "string", required: false },
 “Location_Description”: { "type": "string", required: false },
 “Location_Country”: { "type": "string", required: false },
 “Location_UIC_Code”: { "type": "string", required: false },
 “Location_GeoZone”: { "type": "string", required: false }
 }
 }
 },
 “ITSS_TelematicsApplicationID”: { "type": "string", required:true }
 }
}

BODY

example

{
 “ITSS_TransportDeviceID”: “3180 4674 001-1”,
 “ITSS_TelematicsDeviceID”: “MANUF000000751”,
 “GNSS_Position” :
 {

 “GNSS_UTCtimestamp”: 1436712345.154,
 “GNSS_Latitude”: 52.264304,
 “GNSS_Longitude”: 10.525537,
 “GNSS_Speed_kmph”: 48.87,
 “GNSS_Heading_deg”: 350.1,
 “ITSS_LocationInfo”: {

 “Location_ZIP”: 38126,

 “Location_City”: “Braunschweig”,

 “Location_Street“: “Berliner Platz”,

 “Location_Description": “Braunschweig Hbf”,

 “Location_Country”: “Germany”,

 “Location_UIC_Code”: “051”,

 “Location_GeoZone”: “DE”

 }

},

 “ITSS_TelematicsApplicationID”: “TeleApp0815”

}

© ITSS practice group page 21 of 103

_

Response on success

HTTP Status 201

MIME Type Text plain

Response on undefined error

HTTP Status All other HTTP Status codes

MIME Type text/plain

BODY: {error description}

© ITSS practice group page 22 of 103

_

Request positions for a time interval

1. Description

The customer system requests information about the position of a transport device in a given

time interval (e.g. transportation trace).

2. Method (Request / Response)

The customer system requests a list of positions in the given time interval for one transport

device identified by

• ITSS_TelematicsDeviceID or ITSS_TransportDeviceID

The telematics application responds with the requested list of positions. The GNSS_PositionList

might be empty, if no position is contained in the specified time interval.

Access method: Synchronous

positionsTimeInterval

 ITSS_TelematicsDeviceID or ITSS_TransportDeviceID

 From_UTCtimestamp: UTCtimestamp – interval begin date (inclusive)

 To_UTCtimestamp: UTCtimestamp interval end date (exclusive)

 ITSS_CustomerSystemID

positionsTimeInterval response

 ITSS_TelematicsDeviceID or ITSS_TransportDeviceID

 GNSS_PositionList [

o GNSS_Position,

o ITSS_LocationInfo (optional)]

 ITSS_TelematicsApplicationID

The returned GNSS_PositionList is ordered starting at the From_UTCtimestamp (first array

entry) to the To_UTCtimestamp (last array entry). The timestamps returned can differ from the

ITSS_Request Telematics

Application

Customer

System

Telematics

Application

Customer

System
ITSS_Response

© ITSS practice group page 23 of 103

_

requested interval such that the first array entry might start after the requested start time

(From_UTCtimestamp) and the last array entry might stop before the requested stop time

(To_UTCtimestamp). The telematics application uses the data available from the transport

device and as such might not have data at all for the requested time interval. This also implies

that the interval between two GNSS_PositionList entries in the returned data might differ from

entry to entry including large gaps.

 JSON schema and example:

Request

HTTP Type GET

MIME Type Text plain

Request

Path

https://telematik.xyz.com/itss/1.2/positionsTimeInterval?ITSS_TransportDeviceID={device

Id}&From_UTCtimestamp={timeStamp}&To_UTCtimestamp={timeStamp}&ITSS_CustomerSyst

emID={custId}

or

https://telematik.xyz.com/itss/1.2/positionsTimeInterval?ITSS_TelematicstDeviceID={devi

ceId}&From_UTCtimestamp={timeStamp}&To_UTCtimestamp={timeStamp}&ITSS_CustomerSy

stemID={custId}

Response on success

HTTP Status 200

MIME Type application/json

BODY:

json Schema

{
 “title”: “positionsTimeInterval”,
 "$schema": "http://json-schema.org/draft-04/schema#",
 “type”:“object”,
 “properties”:
 {
 “ITSS_TransportDeviceID”: { "type": "string", required:false },
 “ITSS_TelematicsDeviceID”: { "type": "string", required:true },
 “GNSS_Position_List” :
 {
 “type”: “array”,
 “items”:
 {
 "description": " GNSS_Position",
 "type": "object",
 "properties":
 {
 "GNSS_UTCtimestamp ": { "type": "number", required:true },
 ”GNSS_Latitude": { "type": "number", required:true },
 "GNSS_Longitude ": { "type": "number", required:true },
 "GNSS_Speed_kmph ": { "type": "number", required:false },
 "GNSS_Heading_deg ": { "type": "number", required:false },
 “GNSS_Altitude “: { “type”: “number”, required:false },
 "GNSS_Accuracy ": { "type": "number", required:false },
 “ITSS_LocationInfo”: { "type": "object", required:false,
 "properties":
 {

© ITSS practice group page 24 of 103

_

 “Location_ZIP”: { "type": "string", required: false },
 “Location_City”: { "type": "string", required: false },
 “Location_Street”: { "type": "string", required: false },
 “Location_Description”: { "type": "string", required: false },
 “Location_Country”: { "type": "string", required: false },
 “Location_UIC_Code”: { "type": "string", required: false },
 “Location_GeoZone”: { "type": "string", required: false }
 }
 }
 }
 },
 “ITSS_TelematicsApplicationID”: { "type": "string", required:true }
 }
}

BODY

example

{
 “ITSS_TransportDeviceID”: “3180 4674 001-1”,
 “ITSS_TelematicsDeviceID”: “MANUF000000751”,
 “GNSS_Position_List” : [
 {

 “GNSS_UTCtimestamp”: 1436712345.154,
 “GNSS_Latitude”: 52.264304,
 “GNSS_Longitude”: 10.525537,
 “GNSS_Speed_kmph”: 48.87,
 “GNSS_Heading_deg”: 350.1

 },{
 “GNSS_UTCtimestamp”: 1436712345.154,
 “GNSS_Latitude”: 52.264304,
 “GNSS_Longitude”: 10.525537,
 “GNSS_Speed_kmph”: 48.87,
 “GNSS_Heading_deg”: 350.1,
 “ITSS_LocationInfo”: {

 “Location_ZIP”: 38126,

 “Location_City”: “Braunschweig”,

 “Location_Street“: “Berliner Platz”,

 “Location_Description": “Braunschweig Hbf”,

 “Location_Country”: “Germany”,

 “Location_UIC_Code”: “051”,

 “Location_GeoZone”: “DE”

 }

}],

 “ITSS_TelematicsApplicationID”: “TeleApp0815”

}

Response on empty list

HTTP Status 200

MIME Type application/json

BODY: { “GNSS_Position_List” : [] }

Response on request error

HTTP Status 400

MIME Type application/json

BODY: JSON formatted error description see section Error concept

© ITSS practice group page 25 of 103

_

Response on undefined error

HTTP Status All other HTTP Status codes

MIME Type text/plain

BODY: {error description}

Request the mileage of a transport device

1. Description of the use case

The customer system requests the mileage of a transport device within a specified time interval.

2. Method (Request / Response)

The customer system requests the mileage of one specific transport device travelled within a

given time interval. The transport device is identified by

• ITSS_TelematicsDeviceID or ITSS_TransportDeviceID

The telematics application responds with the mileage travelled in the specified time interval. The

mileage reported is related solely to the mileage travelled while the specific transport device has

been equipped with a telematics device being known to the telematics application.

Access Method: Synchronous

mileageTimeInterval

 ITSS_TelematicsDeviceID or ITSS_TransportDeviceID

 From_UTCtimestamp: UTCtimestamp – interval begin date (inclusive)

 To_UTCtimestamp: UTCtimestamp – interval end date (exclusive)

 ITSS_CustomerSystemID

ITSS_Request Telematics

Application

Customer

System

Telematics

Application

Customer

System
ITSS_Response

© ITSS practice group page 26 of 103

_

mileageTimeInterval response

 ITSS_TelematicsDeviceID or ITSS_TransportDeviceID

 From_UTCtimestamp: UTCtimestamp

 To_UTCtimestamp: UTCtimestamp

 mileage: number in meters

 ITSS_TelematicsApplicationID

The returned mileage represents the information available to the telematics application for the

requested time interval. This does not imply the accurate start at the From_UTCtimestamp and

end at the To_UTCtimestamp. The mileage returned is generated from available information

and as such might start after the requested start time (From_UTCtimestamp) and might stops

before the requested stop time (To_UTCtimestamp). The returned timestamps

(From_UTCtimestamp and To_UTCtimestamp) indicate the start and stop of the interval as

used in the calculation of the mileage. The telematics application uses the data available from

the transport device and as such might not have data at all for the requested time interval.

JSON schema and example:

Request

HTTP Type GET

MIME Type Text plain

Request

Path

https://telematik.xyz.com/itss/1.2/mileageTimeInterval?ITSS_TransportDeviceID={deviceI

d}&From_UTCtimestamp={timeStamp}&To_UTCtimestamp={timeStamp}&ITSS_CustomerSyste

mID={custId}

or

https://telematik.xyz.com/itss/1.2/mileageTimeInterval?ITSS_TelematicstDeviceID={devic

eId}&From_UTCtimestamp={timeStamp}&To_UTCtimestamp={timeStamp}&ITSS_CustomerSys

temID={custId}

Response on success

HTTP Status 200

MIME Type application/json

BODY:

json Schema

{
 “title”: “mileageTimeInterval”,
 "$schema": "http://json-schema.org/draft-04/schema#",
 “type”:“object”,
 “properties”:
 {
 “ITSS_TransportDeviceID”: { "type": "string", required:false },
 “ITSS_TelematicsDeviceID”: { "type": "string", required:true },
 “mileage”: { "type": "number", required:true },
 “ITSS_TelematicsApplicationID”: { "type": "string", required:true }
 }
}

© ITSS practice group page 27 of 103

_

BODY

example

{
 “ITSS_TransportDeviceID”: “3180 4674 001-1”,
 “ITSS_TelematicsDeviceID”: “MANUF000000751”,
 “mileage”: 10000000,
 “ITSS_TelematicsApplicationID”: “TeleApp0815”
}

Response on request error

HTTP Status 400

MIME Type application/json

BODY: JSON formatted error description see section Error concept

Response on undefined error

HTTP Status All other HTTP Status codes

MIME Type text/plain

BODY: {error description}

© ITSS practice group page 28 of 103

_

Notification about the mileage

1. Description

The customer expects to be notified of a new known mileage of a transport device.

2. Method (Event based notification)

The telematics application sends an event notification containing the new mileage.

Access method: Event message

mileage

 ITSS_TelematicsDeviceID

 ITSS_TransportDeviceID (optional)

 mileage: number in meters

 UTCTimeStamp

 ITSS_TelematicsApplicationID

The mileage represents the last known information available to the telematics application and

as that is always an accumulated, absolute mileage.

JSON schema and example:

Request

HTTP Type POST

MIME Type application/json

Request
Path

https://{customerURI}/itss/1.2/mileage

BODY:

json Schema

{
 “title”: “mileage”,
 "$schema": "http://json-schema.org/draft-04/schema#",
 “type”:“object”,
 “properties”:
 {
 “ITSS_TransportDeviceID”: { "type": "string", required:false },
 “ITSS_TelematicsDeviceID”: { "type": "string", required:true },
 “mileage”: { "type": "number", required:true },

Telematics

Application

Customer

System

ITSS_Event

© ITSS practice group page 29 of 103

_

 “UTCtimestamp”: { “type”: “number”, required: true },
 “ITSS_TelematicsApplicationID”: { "type": "string", required:true }
 }
}

BODY

example

{
 “ITSS_TransportDeviceID”: “3180 4674 001-1”,
 “ITSS_TelematicsDeviceID”: “MANUF000000751”,
 “mileage”: 10000000,
 “UTCtimestamp”: 1436712339.124,
 “ITSS_TelematicsApplicationID”: “TeleApp0815”
}

Response on success

HTTP Status 201

MIME Type Text plain

Response on undefined error

HTTP Status All other HTTP Status codes

MIME Type text/plain

BODY: {error description}

© ITSS practice group page 30 of 103

_

Request the loading state

1. Description of the use case

The customer wants to know the last known loading state of a transport device.

2. Method (Request / Response)

The customer system requests the last known loading state of one transport device related to

the given

• ITSS_TelematicsDeviceID or ITSS_TransportDeviceID.

The telematics application responds with the last known loading state of the specific transport

device.

Access Method: Synchronous

loadingState

 ITSS_TelematicsDeviceID or ITSS_TransportDeviceID

 ITSS_CustomerSystemID

loadingState response

 ITSS_TelematicsDeviceID or ITSS_TransportDeviceID

 UTCtimestamp

 GNSS_Position

 ITSS_LocationInfo (optional)

 ITSS_LoadingState

 payload: number in kg (optional)

 ITSS_TelematicsApplicationID

ITSS_Request Telematics

Application

Customer

System

Telematics

Application

Customer

System
ITSS_Response

© ITSS practice group page 31 of 103

_

The UTCtimestamp defines the time when the reported loading state was evaluated. It can differ

from the GNSS_UTCtimestamp as the GNSS_UTCtimestamp states the time of the GNSS

position evaluation.

 JSON schema and example:

Request

HTTP Type GET

MIME Type Text plain

Request

Path

https://telematik.xyz.com/itss/1.2/loadingState?ITSS_TransportDeviceID={deviceId}&

ITSS_CustomerSystemID={custId}

or

https://telematik.xyz.com/itss/1.2/loadingState?ITSS_TelemacticsDeviceID={deviceId}&

ITSS_CustomerSystemID={custId}

Response on success

HTTP Status 200

MIME Type application/json

BODY:

json Schema

{
 “title”: “loadingState”,
 "$schema": "http://json-schema.org/draft-04/schema#",
 “type”:“object”,
 “properties”:
 {
 “ITSS_TransportDeviceID”: { "type": "string", required:false },
 “ITSS_TelematicsDeviceID”: { "type": "string", required:true },
 “UTCtimestamp”: { “type”: “number”, required: true }
 “GNSS_Position” :
 {
 “type”: “object”, required: false
 "properties":
 {
 "GNSS_UTCtimestamp ": { "type": "number", required:true },
 ”GNSS_Latitude": { "type": "number", required:true },
 "GNSS_Longitude ": { "type": "number", required:true },
 "GNSS_Speed_kmph ": { "type": "number", required:false },
 "GNSS_Heading_deg ": { "type": "number", required:false },
 “GNSS_Altitude “: { “type”: “number”, required:false },
 "GNSS_Accuracy ": { "type": "number", required:false },
 “ITSS_LocationInfo”: { "type": "object", required:false,
 "properties":
 {
 “Location_ZIP”: { "type": "string", required: false },
 “Location_City”: { "type": "string", required: false },
 “Location_Street”: { "type": "string", required: false },
 “Location_Description”: { "type": "string", required: false },
 “Location_Country”: { "type": "string", required: false },
 “Location_UIC_Code”: { "type": "string", required: false },
 “Location_GeoZone”: { "type": "string", required: false }
 }
 }
 },
 “loadingState”: { "type": "string", required: true },
 “payload”: { “type”: “number”, required: false },

© ITSS practice group page 32 of 103

_

 “ITSS_TelematicsApplicationID”: { "type": "string", required: true }
 }
}

BODY

example

{
 “ITSS_TransportDeviceID”: “3180 4674 001-1”,
 “ITSS_TelematicsDeviceID”: “MANUF000000751”,
 “UTCtimestamp”: 1436712339.124,
 “GNSS_Position” :
 {

 “GNSS_UTCtimestamp”: 1436712345.154,
 “GNSS_Latitude”: 52.264304,
 “GNSS_Longitude”: 10.525537,
 “GNSS_Speed_kmph”: 48.87,
 “GNSS_Heading_deg”: 350.1,

 “ITSS_LocationInfo”: {
 “Location_ZIP”: 38126,
 “Location_City”: “Braunschweig”,
 “Location_Street“: “Berliner Platz”,
 “Location_Description": “Braunschweig Hbf”,
 “Location_Country”: “Germany”,
 “Location_UIC_Code”: “051”,
 “Location_GeoZone”: “DE”
 }
 },
 “loadingState”: “loaded”,
 “payload”: 20145
 “ITSS_TelematicsApplicationID”: “TeleApp0815”
}

Response on request error

HTTP Status 400

MIME Type application/json

BODY: JSON formatted error description see section Error concept

Response on undefined error

HTTP Status All other HTTP Status codes

MIME Type text/plain

BODY: {error description}

© ITSS practice group page 33 of 103

_

Notification about the loading state

1. Description

The customer expects to be notified of a new known loading state of a transport device.

2. Method (Event based notification)

The telematics application sends an event notification containing the new loading state.

Access method: Event message

loadingState

 ITSS_TelematicsDeviceID

 ITSS_TransportDeviceID (optional)

 UTCtimestamp

 GNSS_Position

 ITSS_LocationInfo (optional)

 ITSS_LoadingState

 payload: number in kg (optional)

 ITSS_TelematicsApplicationID

The UTCtimestamp defines the time when the reported loading state was evaluated. It can differ

from the GNSS_UTCtimestamp as the GNSS_UTCtimestamp states the time of the GNSS

position evaluation.

JSON schema and example:

Request

HTTP Type POST

MIME Type application/json

Request
Path

https://{customerURI}/itss/1.2/loadingState

BODY:

json Schema

{
 “title”: “loadingState”,
 "$schema": "http://json-schema.org/draft-04/schema#",
 “type”:“object”,
 “properties”:
 { “ITSS_TransportDeviceID”: { "type": "string", required:false },

Telematics

Application

Customer

System

ITSS_Event

© ITSS practice group page 34 of 103

_

 “ITSS_TelematicsDeviceID”: { "type": "string", required:true },
 “UTCtimestamp”: { “type”: “number”, required: true }
 “GNSS_Position” :
 {
 “type”: “object”, required: false
 "properties":
 {
 "GNSS_UTCtimestamp ": { "type": "number", required:true },
 ”GNSS_Latitude": { "type": "number", required:true },
 "GNSS_Longitude ": { "type": "number", required:true },
 "GNSS_Speed_kmph ": { "type": "number", required:false },
 "GNSS_Heading_deg ": { "type": "number", required:false },
 “GNSS_Altitude “: { “type”: “number”, required:false },
 "GNSS_Accuracy ": { "type": "number", required:false },
 “ITSS_LocationInfo”: { "type": "object", required:false,
 "properties":
 {
 “Location_ZIP”: { "type": "string", required: false },
 “Location_City”: { "type": "string", required: false },
 “Location_Street”: { "type": "string", required: false },
 “Location_Description”: { "type": "string", required: false },
 “Location_Country”: { "type": "string", required: false },
 “Location_UIC_Code”: { "type": "string", required: false },
 “Location_GeoZone”: { "type": "string", required: false }
 }
 }
 },
 “loadingState”: { "type": "string", required: true },
 “payload”: { “type”: “number”, required: false },
 “ITSS_TelematicsApplicationID”: { "type": "string", required:true }
 }
}

BODY

example

{
 “ITSS_TransportDeviceID”: “3180 4674 001-1”,
 “ITSS_TelematicsDeviceID”: “MANUF000000751”,
 “UTCtimestamp”: 1436712339.124,
 “GNSS_Position” :
 {

 “GNSS_UTCtimestamp”: 1436712345.154,
 “GNSS_Latitude”: 52.264304,
 “GNSS_Longitude”: 10.525537,
 “GNSS_Speed_kmph”: 48.87,
 “GNSS_Heading_deg”: 350.1,

 “ITSS_LocationInfo”: {
 “Location_ZIP”: 38126,
 “Location_City”: “Braunschweig”,
 “Location_Street“: “Berliner Platz”,
 “Location_Description": “Braunschweig Hbf”,
 “Location_Country”: “Germany”,
 “Location_UIC_Code”: “051”,
 “Location_GeoZone”: “DE”
 }
 },
 “loadingState”: “loaded”,
 “payload”: 20145
 “ITSS_TelematicsApplicationID”: “TeleApp0815”
}

© ITSS practice group page 35 of 103

_

Response on success

HTTP Status 201

MIME Type Text plain

Response on undefined error

HTTP Status All other HTTP Status codes

MIME Type text/plain

BODY: {error description}

© ITSS practice group page 36 of 103

_

Request all known devices

1. Description of the use case

The customer system wants to get a list of all ITSS_TelematicsDeviceIDs known to the

telematics application. If the telematics application also knows the mapping of

ITSS_TelematicsDeviceID and ITSS_TransportDeviceID the request will return both IDs.

Otherwise the returned list only contains the ITSS_TelematicsDeviceID.

2. Method (Request / Response)

The customer system requests the list of all known devices related to the given

 ITSS_CustomerSystemID

The telematics application responds with the list of known devices for this customer system and,

if available, the mapping to the ITSS_TransportDeviceID.

Access Method: Synchronous

allDevices

 ITSS_CustomerSystemID

allDevices response

 UTCTimeStamp

 ITSS_DeviceList [

o ITSS_TransportDeviceID (optional),

o ITSS_TelematicsDeviceID]

 ITSS_TelematicsApplicationID

ITSS_Request Telematics

Application

Customer

System

Telematics

Application

Customer

System
ITSS_Response

© ITSS practice group page 37 of 103

_

JSON schema and example:

Request

HTTP Type GET

MIME Type Text plain

Request
Path

https://telematik.xyz.com/itss/1.2/allDevices?ITSS_CustomerSystemID={custId}

Response on success

HTTP Status 200

MIME Type application/json

BODY:
json Schema

{
 “title”: “allDevices”,
 "$schema": "http://json-schema.org/draft-04/schema#",
 “type”:“object”,
 “properties”:
 {
 “UTCtimestamp”: { “type”: “number”, required: true },
 “ITSS_DeviceList” : [{
 “ITSS_TransportDeviceID”: { "type": "string", required: false },
 “ITSS_TelematicsDeviceID”: { "type": "string", required: true }
 }],
 “ITSS_TelematicsApplicationID”: { "type": "string", required: true }
 }
}

BODY
example

{
 “UTCtimestamp”: 1436712339.124,
 "ITSS_DeviceList": [
 {“ITSS_TransportDeviceID”: “3180 4674 001-1”,
 “ITSS_TelematicsDeviceID”: “MANUF000000751”},
 {“ITSS_TransportDeviceID”: “3180 4674 001-2”,
 “ITSS_TelematicsDeviceID”: “MANUF000000752”},
 {“ITSS_TransportDeviceID”: “3180 4674 001-3”,
 “ITSS_TelematicsDeviceID”: “MANUF000000753”}],
 "ITSS_TelematicsApplicationID": "TeleApp0815"
}

Response on request error

HTTP Status 400

MIME Type application/json

BODY: JSON formatted error description see section Error concept

Response on undefined error

HTTP Status All other HTTP Status codes

MIME Type text/plain

BODY: {error description}

© ITSS practice group page 38 of 103

_

Request sensor values for a time interval

1. Description of the use case

The customer requests information about the sensor values of a telematics device in a given

time interval.

2. Method (Request / Response)

The customer system requests a list of sensor values in the given time interval for one

telematics device identified by

 ITSS_TelematicsDeviceID or ITSS_TransportDeviceID

The telematics application responds with the requested list of sensor values. The

ITSS_SensorValueList might be empty, if no sensor values are contained in the specified time

interval.

Access Method: Synchronous

sensorValuesTimeInterval

 ITSS_TelematicsDeviceID or ITSS_TransportDeviceID

 From_UTCtimestamp: UTCtimestamp – interval begin date (inclusive)

 To_UTCtimestamp: UTCtimestamp interval end date (exclusive)

 ITSS_CustomerSystemID

sensorValuesTimeInterval response

 ITSS_TelematicsDeviceID or ITSS_TransportDeviceID

 ITSS_SensorValueList [

o ITSS_SensorValue]

 ITSS_TelematicsApplicationID

ITSS_Request Telematics

Application

Customer

System

Telematics

Application

Customer

System
ITSS_Response

© ITSS practice group page 39 of 103

_

The returned ITSS_SensorValueList contains none or one or multiple entries of

ITSS_SensorValues (see section Glossary: for details), ordered starting at the

From_UTCtimestamp (first array entry) to the To_UTCtimestamp (last array entry). The

timestamps returned can differ from the requested interval such that the first array entry might

start after the requested start time (From_UTCtimestamp) and the last array entry might stop

before the requested stop time (To_UTCtimestamp). The telematics application uses the data

available from the telematics device and as such might not have data at all for the requested

time interval. This also implies that the interval between two ITSS_SensorValueList entries in

the returned data might differ from entry to entry including large gaps.

If a sensor sends data directly to the telematics application, e.g. by using some kind of gateway

which is not a telematics device, the ITSS_TelematicsDeviceID must be set equal to the

ITSS_SensorId. That is, a sensor which communicates directly with a telematics application not

using any kind of telematics device between is considered a telematics device in itself and must

have an ITSS_TelematicsDeviceID equal to its ITSS_SensorId.

The request returns the values for all sensors connected or associated with the given

ITSS_TelematicsDeviceID.

JSON schema and example:

Request

HTTP Type GET

MIME Type Text plain

Request
Path

https://telematik.xyz.com/itss/1.2/SensorValuesTimeInterval?ITSS_TransportDeviceID={d

eviceId}&From_UTCtimestamp={timeStamp}&To_UTCtimestamp={timeStamp}&ITSS_Customer
SystemID={custId}

or
https://telematik.xyz.com/itss/1.2/SensorValuesTimeInterval?ITSS_TelematicsDeviceID={

deviceId}&From_UTCtimestamp={timeStamp}&To_UTCtimestamp={timeStamp}&ITSS_Custom
erSystemID={custId}

Response on success

HTTP Status 200

MIME Type application/json

BODY:
json Schema

{
 “title”: “sensorValuesTimeInterval”,
 "$schema": "http://json-schema.org/draft-04/schema#",
 “type”: “object”,
 “properties”:
 {
 "ITSS_TransportDeviceID": { "type": "string", required: false },

© ITSS practice group page 40 of 103

_

 "ITSS_TelematicsDeviceID": { "type": "string", required: true },
 “ITSS_SensorValueList” : { "type": "array", required: true },
 [{
 “ITSS_SensorValue”: { "type": "object", required: false }
 “properties”:
 {
 "SamplingUTCTimestamp": { "type": "number", required: true },

 "ITSS_SensorId": { "type": "string", required: true },

 "Value": { "type": "float", required: true },

 "ITSS_SensorType": { "type": "string", required: false },

 "ITSS_SensorPosition": { "type": "string", required: false }

 }

 }]

 “ITSS_TelematicsApplicationID”: { "type": "string", required: true }

 }

}

BODY
example

{
 “ITSS_TransportDeviceID”: “3180 4674 001-1”,
 “ITSS_TelematicsDeviceID”: “MANUF000000751”,
 “ITSS_SensorValueList”:[{
 "SamplingUTCTimestamp ": 1436712345.154,

 "ITSS_SensorId": "MANUF000001234500010",

 "Value": "48.87",

 "ITSS_SensorType": "temperature",

 "ITSS_SensorPosition": "axleBearingL1

 }, {

 "SamplingUTCTimestamp": 1436722345.154,

 "ITSS_SensorId": "MANUF000001234500123",

 "Value": "175000.0",

 "ITSS_SensorType": "pressure",

 "ITSS_SensorPosition": "tank"

 }],

 “ITSS_TelematicsApplicationID”: “TeleApp0815”

}

Response on request error

HTTP Status 400

MIME Type application/json

BODY: JSON formatted error description see section Error concept

Response on undefined error

HTTP Status All other HTTP Status codes

MIME Type text/plain

BODY: {error description}

© ITSS practice group page 41 of 103

_

Notification about one or more new sensor values

1. Description

The customer expects to be notified if a sensor reports new data. The sensor data is provided

only for diagnostic purposes. At no time, it shall be used to derive safety related information or

actions.

2. Method (Event based notification)

The telematics application sends an event notification containing one or more

ITSS_SensorValue when new sensor data is available.

Access method: Event message

sensorValues

 ITSS_TelematicsDeviceID

 ITSS_TransportDeviceID (optional)

 ITSS_SensorValueList [

o ITSS_SensorValue]

 ITSS_TelematicsApplicationID

The transmitted ITSS_SensorValueList contains one or multiple entries of ITSS_SensorValues

(see section Glossary: for details). The values are transmitted as they arrive in the telematics

application, hence the order of the ITSS_SensorValue within an ITSS_SensorValueList may not

be ordered according to their timestamps.

If a sensor sends data directly to the telematics application, e.g. by using some kind of gateway

which is not a telematics device, the ITSS_TelematicsDeviceID must be set equal to the

ITSS_SensorId. That is, a sensor which communicates directly with a telematics application not

using any kind of telematics device between is considered a telematics device in itself and must

have an ITSS_TelematicsDeviceID equal to its ITSS_SensorId.

Telematics

Application

Customer

System

ITSS_Event

© ITSS practice group page 42 of 103

_

JSON Schema and example for a notification related to an ITSS_TelematicsDeviceID

Request

HTTP Type POST

MIME Type application/json

Request
Path

https://{customerURI}/itss/1.2/sensorValues

BODY:
json Schema

{
 “title”: “sensorValues”,
 "$schema": "http://json-schema.org/draft-04/schema#",
 “type”: “object”,
 “properties”:
 {
 "ITSS_TransportDeviceID": { "type": "string", required: false },
 "ITSS_TelematicsDeviceID": { "type": "string", required: true },
 “ITSS_SensorValueList” : { "type": "array", required: true },
 [{
 “ITSS_SensorValue”: { "type": "object", required: false }
 “properties”:
 {
 "SamplingUTCTimestamp": { "type": "number", required: true },

 "ITSS_SensorId": { "type": "string", required: true },

 "Value": { "type": "float", required: true },

 "ITSS_SensorType": { "type": "string", required: true },

 "ITSS_SensorPosition": { "type": "string", required: true }

 }

 }]

 “ITSS_TelematicsApplicationID”: { "type": "string", required: true }

 }

}

BODY
example

{
 “ITSS_TransportDeviceID”: “3180 4674 001-1”,
 “ITSS_TelematicsDeviceID”: “MANUF000000751”,
 “ITSS_SensorValueList”:[{
 "SamplingUTCTimestamp ": 1436712345.154,

 "ITSS_SensorId": "MANUF000001234500010",

 "Value": "48.87",

 "ITSS_SensorType": "temperature",

 "ITSS_SensorPosition": "axleBearingL1

 }, {

 "SamplingUTCTimestamp": 1436722345.154,

 "ITSS_SensorId": "MANUF000001234500123",

 "Value": "175000.0",

 "ITSS_SensorType": "pressure",

 "ITSS_SensorPosition": "tank"

 }],

 “ITSS_TelematicsApplicationID”: “TeleApp0815”

}

Response on success

HTTP Status 201

MIME Type Text plain

© ITSS practice group page 43 of 103

_

Response on undefined error

HTTP Status All other HTTP Status codes

MIME Type text/plain

BODY: {error description}

© ITSS practice group page 44 of 103

_

Request last known geofencing state

1. Description

The customer wants to get information about the last known geofencing state of a specific

transport device. The geofencing state is a list of all geofences the device is currently located

within.

2. Method (Request / Response)

The customer system requests the last known geofencing state of a transport device identified

by the

• ITSS_TelematicsDeviceID or ITSS_TransportDeviceID

The telematics application processes the request and responds with the required information.

Access method: Synchronous

lastGeofencingState

 ITSS_TelematicsDeviceID or ITSS_TransportDeviceID

 ITSS_CustomerSystemID

lastGeofencingState response

 ITSS_TelematicsDeviceID or ITSS_TransportDeviceID

 UTCtimestamp

 ITSS_GeofenceList

 GNSS_Position (optional)

 ITSS_TelematicsApplicationID

If the device is currently not located within a geofence an empty ITSS_GeofenceList is returned.

ITSS_Request Telematics

Application

Customer

System

Telematics

Application

Customer

System
ITSS_Response

© ITSS practice group page 45 of 103

_

JSON schema and example:

Request

HTTP Type GET

MIME Type Text plain

Request

Path

https://telematik.xyz.com/itss/1.2/lastGeofencingState?ITSS_TransportDeviceID={deviceI

d}& ITSS_CustomerSystemID={custId}

or

https://telematik.xyz.com/itss/1.2/lastGeofencingState?ITSS_TelematicsDeviceID={device

Id}& ITSS_CustomerSystemID={custId}

Response on success

HTTP Status 200

MIME Type application/json

BODY:

json Schema

{
 "title": "lastGeofencingState",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties":
 {
 "ITSS_TransportDeviceID": { "type": "string", required: false },
 "ITSS_TelematicsDeviceID": { "type": "string", required: true },
 "UTCtimestamp": { "type": number", required: true },
 "ITSS_GeofenceList":
 [{
 "type": array, required: true,
 "items"
 {
 "type": "object", required: false,
 "properties":
 {
 "GeofenceID": { "type": "string", required: true },
 "GeofenceName": { "type": "string", required: false }
 }
 }
 }]
 "GNSS_Position" :
 {
 "type": "object", required: false,
 "properties":
 {
 "GNSS_UTCtimestamp": { "type": "number", required: true },
 "GNSS_Latitude": { "type": "number", required: true },
 "GNSS_Longitude": { "type": "number", required: true },
 "GNSS_Speed_kmph": { "type": "number", required: false },
 "GNSS_Heading_deg": { "type": "number", required: false },
 "ITSS_LocationInfo":
 {
 "type": "object", required: false,
 "properties":
 {
 "Location_ZIP": { "type": "string", required: false },
 "Location_City": { "type": "string", required: false },
 "Location_Street": { "type": "string", required: false },
 "Location_Description": { "type": "string", required: false },
 "Location_Country": { "type": "string", required: false },

© ITSS practice group page 46 of 103

_

 "Location_UIC_Code": { "type": "string", required: false },
 "Location_GeoZone": { "type": "string", required: false },
 "Location_POI_ID" : { "type": "string", required: false }
 }
 }
 }
 },
 "ITSS_TelematicsApplicationID": { "type": "string", required: true }
 }
}

BODY

example

{
 "ITSS_TransportDeviceID": "3180 4674 001-1",
 "ITSS_TelematicsDeviceID": "MANUF000000751",
 "UTCtimestamp": 1436712345.15,
 "ITSS_GeofenceList": [
 {
 "GeofenceID": "123456789",
 "GeofenceName": "Very important location"
 },
 {
 "GeofenceID": "99999999",
 "GeofenceName": "Another important location"
 }
],
 "GNSS_Position":
 {
 "GNSS_UTCtimestamp": 1436790123.154,
 "GNSS_Latitude": 52.264304,
 "GNSS_Longitude": 10.525537,
 "GNSS_Speed_kmph": 48.87,
 "GNSS_Heading_deg": 350.1,
 "ITSS_LocationInfo":

 {

 "Location_ZIP": "38126",

 "Location_City": "Braunschweig",

 "Location_Street": "Berliner Platz",

 "Location_Description": "Braunschweig Hbf",

 "Location_Country": "Germany",

 "Location_UIC_Code": "051",

 "Location_GeoZone": "DE"

 }

 },

 "ITSS_TelematicsApplicationID": "TeleApp0815"

}

Response on request error

HTTP Status 400

MIME Type application/json

BODY: JSON formatted error description see section Error concept

Response on undefined error

HTTP Status All other HTTP Status codes

MIME Type text/plain

BODY: {error description}

© ITSS practice group page 47 of 103

_

Notification about a geofence event

1. Description

The customer expects to be notified of a new geofence event of a transport device.

A geofence event occurs either when a device enters (ITSS_GeofenceEventTrigger = "enter")

or leaves a geofence (ITSS_GeofenceEventTrigger = "exit").

2. Method (Event based notification)

The telematics application sends an event notification containing the geofencing event.

Access method: Event message

geofenceState

 ITSS_TelematicsDeviceID

 ITSS_TransportDeviceID (optional)

 UTCtimestamp: the time when this event has been evaluated

 ITSS_GeoFence

 ITSS_GeofenceEventTrigger: "enter" or "exit"

 GNSS_Position (optional): position that has been used to evaluate the geofence state

 ITSS_TelematicsApplicationID

The UTCtimestamp defines the time when the reported geofence event was evaluated. Note

that this timestamp may not report the exact time when the border of the geofence was actually

crossed by the transport device. It may also differ from the GNSS_UTCtimestamp of an

optionally included GNSS_Position which only states when this GNSS position has been

acquired.

If the geofence evaluation generates events for more than one geofence, e.g. one "exit" event

and one "enter" event, every event is communicated separately.

Telematics

Application

Customer

System

ITSS_Event

© ITSS practice group page 48 of 103

_

JSON schema and example:

Request

HTTP Type POST

MIME Type application/json

Request
Path

https://{customerURI}/itss/1.2/geofenceState

BODY:

json Schema

{
 "title": "geofenceState",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties":
 {
 "ITSS_TransportDeviceID": { "type": "string", required: false },
 "ITSS_TelematicsDeviceID": { "type": "string", required: true },
 "UTCtimestamp": { "type": "number", required: true },
 "ITSS_Geofence"
 {
 "type": "object", required: true,
 "properties":
 {
 "GeofenceID": { "type": "string", required: true },
 "GeofenceName": { "type": "string", required: false },
 }
 }
 "ITSS_GeofenceEventTrigger": { "type": "string", required: true },
 "GNSS_Position":
 {
 "type": "object", required: false,
 "properties":
 {
 "GNSS_UTCtimestamp ": { "type": "number", required: true },
 "GNSS_Latitude": { "type": "number", required: true },
 "GNSS_Longitude ": { "type": "number", required: true },
 "GNSS_Speed_kmph": { "type": "number", required: false },
 "GNSS_Heading_deg": { "type": "number", required: false },
 "ITSS_LocationInfo":
 {
 "type": "object", required: false,
 "properties":
 {
 "Location_ZIP": { "type": "string", required: false },
 "Location_City": { "type": "string", required: false },
 "Location_Street": { "type": "string", required: false },
 "Location_Description": { "type": "string", required: false },
 "Location_Country": { "type": "string", required: false },
 "Location_UIC_Code": { "type": "string", required: false },
 "Location_GeoZone": { "type": "string", required: false },
 "Location_POI_ID": { "type": "string", required: false }
 }
 }
 }
 },
 "ITSS_TelematicsApplicationID": { "type": "string", required: true }
 }
}

© ITSS practice group page 49 of 103

_

BODY

example

{
 "ITSS_TransportDeviceID": "3180 4674 001-1",
 "ITSS_TelematicsDeviceID": "MANUF000000751",
 "UTCtimestamp": 1436712339.124,
 "ITSS_Geofence"
 {
 "GeofenceID": "123456789",
 "GeofenceName": "Very important place"
 }
 "ITSS_GeofenceEventTrigger": "enter",
 "GNSS_Position":
 {

 "GNSS_UTCtimestamp": 1436712345.154,
 "GNSS_Latitude": 52.264304,
 "GNSS_Longitude": 10.525537,
 "GNSS_Speed_kmph": 48.87,
 "GNSS_Heading_deg": 350.1,

 "ITSS_LocationInfo":
 {
 "Location_ZIP": "38126",
 "Location_City": "Braunschweig",
 "Location_Street": "Berliner Platz",
 "Location_Description": "Braunschweig Hbf",
 "Location_Country": "Germany",
 "Location_UIC_Code": "051",
 "Location_GeoZone": "DE"
 }
 },
 "ITSS_TelematicsApplicationID": "TeleApp0815"
}

Response on success

HTTP Status 201

MIME Type Text plain

Response on undefined error

HTTP Status All other HTTP Status codes

MIME Type text/plain

BODY: {error description}

© ITSS practice group page 50 of 103

_

Request geofence events for a time interval

1. Description

The customer requests information about the geofence events of one transport device in a

given time interval (e.g. transportation trace).

2. Method (Request / Response)

The customer system requests a list of geofence events in the given time interval for one

transport device identified by

• ITSS_TelematicsDeviceID or ITSS_TransportDeviceID

The telematics application responds with the requested list of geofence events. The

GeofenceEventList might be empty, if no geofence event is contained in the specified time

interval.

Access method: Synchronous

geofenceEventsTimeInterval

 ITSS_TelematicsDeviceID or ITSS_TransportDeviceID

 From_UTCtimestamp: UTCtimestamp – interval begin date (inclusive)

 To_UTCtimestamp: UTCtimestamp interval end date (exclusive)

 ITSS_CustomerSystemID

geofenceEventsTimeInterval response

 ITSS_TelematicsDeviceID or ITSS_TransportDeviceID

 ITSS_GeofenceEventList

 ITSS_TelematicsApplicationID

The returned ITSS_GeofenceEventList is ordered starting at the From_UTCtimestamp (first

array entry) to the To_UTCtimestamp (last array entry). The timestamps returned can differ from

ITSS_Request Telematics

Application

Customer

System

Telematics

Application

Customer

System
ITSS_Response

© ITSS practice group page 51 of 103

_

the requested interval such that the first array entry might start after the requested start time

(From_UTCtimestamp) and the last array entry might stop before the requested stop time

(To_UTCtimestamp). The telematics application uses the data available from the transport

device and as such might not have data at all for the requested time interval.

 JSON schema and example:

Request

HTTP Type GET

MIME Type Text plain

Request

Path

https://telematik.xyz.com/itss/1.2/geofenceEventsTimeInterval?ITSS_TransportDeviceID=

{deviceId}&From_UTCtimestamp={timeStamp}&To_UTCtimestamp={timeStamp}&ITSS_Custom

erSystemID={custId}

or

https://telematik.xyz.com/itss/1.2/geofenceEventsTimeInterval?ITSS_TelematicsDeviceID

={deviceId}&From_UTCtimestamp={timeStamp}&To_UTCtimestamp={timeStamp}&ITSS_Custo

merSystemID={custId}

Response on success

HTTP Status 200

MIME Type application/json

BODY:

json Schema

{
 "title": "geofenceEventsTimeInterval",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties":
 {
 "ITSS_TransportDeviceID": { "type": "string", required: false },
 "ITSS_TelematicsDeviceID": { "type": "string", required: true },
 "ITSS_GeofenceEventList":
 [{
 "type": "array", required: true,
 "items":
 {
 "type": "object", required: false
 "properties":
 {
 "UTCtimestamp": { "type": "number", required: true },
 "ITSS_Geofence"
 {
 "type": "object", required: true,
 "properties":
 {
 "GeofenceID": { "type": "string", required: true },
 "GeofenceName": { "type": "string", required: false }
 }
 }
 "ITSS_GeofenceEventTrigger": { "type": "string", required: true }
 "GNSS_Position" :
 {
 "type": "object", required: false
 "properties":
 {

© ITSS practice group page 52 of 103

_

 "GNSS_UTCtimestamp": { "type": "number", required: true },
 "GNSS_Latitude": { "type": "number", required: true },
 "GNSS_Longitude": { "type": "number", required: true },
 "GNSS_Speed_kmph": { "type": "number", required: false },
 "GNSS_Heading_deg": { "type": "number", required: false },
 "ITSS_LocationInfo":
 {
 "type": "object", required: false,
 "properties":
 {
 "Location_ZIP": { "type": "string", required: false },
 "Location_City": { "type": "string", required: false },
 "Location_Street": { "type": "string", required: false },
 "Location_Description": { "type": "string", required: false },
 "Location_Country": { "type": "string", required: false },
 "Location_UIC_Code": { "type": "string", required: false },
 "Location_GeoZone": { "type": "string", required: false },
 "Location_POI_ID" : { "type": "string", required: false }

 }
 }
 }
 }
 }
 }
 }]
 "ITSS_TelematicsApplicationID": { "type": "string", required: true }
 }
}

BODY

example

{
 "ITSS_TransportDeviceID": "3180 4674 001-1",
 "ITSS_TelematicsDeviceID": "MANUF000000751",
 "ITSS_GeofenceEventList":
 [{
 "UTCtimestamp": 1436712339.124,
 "ITSS_Geofence":
 {
 "GeofenceID": "123456789",
 "GeofenceName": "Very important place"
 },
 "ITSS_GeofenceEventTrigger": "enter"
 },
 {
 "UTCtimestamp": 14367123654.765,
 "ITSS_Geofence":
 {
 "GeofenceID": "123456789",
 "GeofenceName": "Very important place"
 },
 "ITSS_GeofenceEventTrigger": "exit"
 }],
 "ITSS_TelematicsApplicationID": "TeleApp0815"
}

Response on empty list

HTTP Status 200

MIME Type application/json

BODY: { "ITSS_GeofenceEventList" : [] }

© ITSS practice group page 53 of 103

_

Response on request error

HTTP Status 400

MIME Type application/json

BODY: JSON formatted error description see section Error concept

Response on undefined error

HTTP Status All other HTTP Status codes

MIME Type text/plain

BODY: {error description}

© ITSS practice group page 54 of 103

_

Request the movement state

1. Description of the use case

The customer wants to know the last known movement state of a transport device.

2. Method (Request / Response)

The customer system requests the last known movement state of a transport device related to

the given

• ITSS_TelematicsDeviceID or ITSS_TransportDeviceID.

The telematics application responds with the last known movement state of the specific

transport device.

Access Method: Synchronous

movementState

 ITSS_TelematicsDeviceID or ITSS_TransportDeviceID

 ITSS_CustomerSystemID

movementState response

 ITSS_TelematicsDeviceID or ITSS_TransportDeviceID

 UTCtimestamp

 GNSS_Position (optional)

 ITSS_MovementState: "moving" / "standing" / "parking" / "unknown"

 ITSS_TelematicsApplicationID

The UTCtimestamp defines the time when the reported movement state was evaluated. It can

differ from the GNSS_UTCtimestamp as the GNSS_UTCtimestamp states the time of the GNSS

position acquisition. This specification does not define how the movement state is evaluated by

the telematics application or telematics device.

 JSON schema and example:

ITSS_Request Telematics

Application

Customer

System

Telematics

Application

Customer

System
ITSS_Response

© ITSS practice group page 55 of 103

_

Request

HTTP Type GET

MIME Type Text plain

Request

Path

https://telematik.xyz.com/itss/1.2/movementState?ITSS_TransportDeviceID={deviceId}&

ITSS_CustomerSystemID={custId}

or

https://telematik.xyz.com/itss/1.2/movementState?ITSS_TelematicsDeviceID={deviceId}&

ITSS_CustomerSystemID={custId}

Response on success

HTTP Status 200

MIME Type application/json

BODY:

json Schema

{
 "title": "movementState",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties":
 {
 "ITSS_TransportDeviceID": { "type": "string", required: false },
 "ITSS_TelematicsDeviceID": { "type": "string", required: true },
 "UTCtimestamp": { "type": "number", required: true },
 "GNSS_Position":
 {
 "type": "object", required: false,
 "properties":
 {
 "GNSS_UTCtimestamp": { "type": "number", required: true },
 "GNSS_Latitude": { "type": "number", required: true },
 "GNSS_Longitude": { "type": "number", required: true },
 "GNSS_Speed_kmph": { "type": "number", required: false },
 "GNSS_Heading_deg": { "type": "number", required: false },
 "ITSS_LocationInfo":
 {
 "type": "object", required: false,
 "properties":
 {
 "Location_ZIP": { "type": "string", required: false },
 "Location_City": { "type": "string", required: false },
 "Location_Street": { "type": "string", required: false },
 "Location_Description": { "type": "string", required: false },
 "Location_Country": { "type": "string", required: false },
 "Location_UIC_Code": { "type": "string", required: false },
 "Location_GeoZone": { "type": "string", required: false },
 "Location_POI_ID" : { "type": "string", required: false }
 }
 }
 }
 },
 "ITSS_MovementState": { "type": "string", required: true },
 "ITSS_TelematicsApplicationID": { "type": "string", required: true }
 }
}

BODY

example

{
 "ITSS_TransportDeviceID": "3180 4674 001-1",

© ITSS practice group page 56 of 103

_

 "ITSS_TelematicsDeviceID": "MANUF000000751",
 "UTCtimestamp": 1436712339.124,
 "GNSS_Position":
 {
 "GNSS_UTCtimestamp": 1436712353.3,
 "GNSS_Latitude": 52.264304,
 "GNSS_Longitude": 10.525537,
 "GNSS_Speed_kmph": 48.87,
 "GNSS_Heading_deg": 350.1,
 "ITSS_LocationInfo":
 {
 "Location_ZIP": "38126",
 "Location_City": "Braunschweig",
 "Location_Street": "Berliner Platz",
 "Location_Description": "Braunschweig Hbf",
 "Location_Country": "Germany",
 "Location_UIC_Code": "051",
 "Location_GeoZone": "DE"
 }
 },
 "ITSS_MovementState": "moving",
 "ITSS_TelematicsApplicationID": "TeleApp0815"
}

Response on request error

HTTP Status 400

MIME Type application/json

BODY: JSON formatted error description see section Error concept

Response on undefined error

HTTP Status All other HTTP Status codes

MIME Type text/plain

BODY: {error description}

© ITSS practice group page 57 of 103

_

Notification about the movement state

1. Description

The customer expects to be notified of a new known movement state of a transport device.

2. Method (Event based notification)

The telematics application sends an event notification containing the new movement state.

Access method: Event message

movementState

 ITSS_TelematicsDeviceID

 ITSS_TransportDeviceID (optional)

 UTCtimestamp

 GNSS_Position (optional)

 ITSS_MovementState: "moving" / "standing" / "parking" / "unknown"

 ITSS_TelematicsApplicationID

The UTCtimestamp defines the time when the reported movement state was evaluated. It can

differ from the GNSS_UTCtimestamp as the GNSS_UTCtimestamp states the time of the GNSS

position acquisition.

JSON schema and example:

Request

HTTP Type POST

MIME Type application/json

Request
Path

https://{customerURI}/itss/1.2/movementState

BODY:

json Schema

{
 "title": "movementState",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties":
 {
 "ITSS_TransportDeviceID": { "type": "string", required: false },
 "ITSS_TelematicsDeviceID": { "type": "string", required: true },
 "UTCtimestamp": { "type": "number", required: true },
 "GNSS_Position":

ITSS_Event Customer

System

Telematics

Application

© ITSS practice group page 58 of 103

_

 {
 "type": "object", required: false
 "properties":
 {
 "GNSS_UTCtimestamp": { "type": "number", required: true },
 "GNSS_Latitude": { "type": "number", required: true },
 "GNSS_Longitude": { "type": "number", required: true },
 "GNSS_Speed_kmph": { "type": "number", required: false },
 "GNSS_Heading_deg": { "type": "number", required: false },
 "ITSS_LocationInfo":
 {
 "type": "object", required: false,
 "properties":
 {
 "Location_ZIP": { "type": "string", required: false },
 "Location_City": { "type": "string", required: false },
 "Location_Street": { "type": "string", required: false },
 "Location_Description": { "type": "string", required: false },
 "Location_Country": { "type": "string", required: false },
 "Location_UIC_Code": { "type": "string", required: false },
 "Location_GeoZone": { "type": "string", required: false },
 "Location_POI_ID" : { "type": "string", required: false }
 }
 }
 }
 },
 "ITSS_MovementState": { "type": "string", required: true },
 "ITSS_TelematicsApplicationID": { "type": "string", required: true }
 }
}

BODY

example

{
 "ITSS_TransportDeviceID": "3180 4674 001-1",
 "ITSS_TelematicsDeviceID": "MANUF000000751",
 "UTCtimestamp": 1436712339.124,
 "GNSS_Position":
 {
 "GNSS_UTCtimestamp": 1436712345.154,
 "GNSS_Latitude": 52.264304,
 "GNSS_Longitude": 10.525537,
 "GNSS_Speed_kmph": 48.87,
 "GNSS_Heading_deg": 350.1,
 "ITSS_LocationInfo":
 {
 "Location_ZIP": "38126",
 "Location_City": "Braunschweig",
 "Location_Street": "Berliner Platz",
 "Location_Description": "Braunschweig Hbf",
 "Location_Country": "Germany",
 "Location_UIC_Code": "051",
 "Location_GeoZone": "DE"
 }
 },
 "ITSS_MovementState": "moving",
 "ITSS_TelematicsApplicationID": "TeleApp0815"
}

Response on success

HTTP Status 201

MIME Type Text plain

© ITSS practice group page 59 of 103

_

Response on undefined error

HTTP Status All other HTTP Status codes

MIME Type text/plain

BODY: {error description}

© ITSS practice group page 60 of 103

_

Notification of a detected derailment

1. Description

The customer expects to be notified immediately, if a derailment has been detected by the

telematics device.

This non-vital information is provided for diagnostic purposes only. At no time, it shall be used to

derive safety related information or actions.

2. Method (Event based notification)

The telematics application sends an event notification containing the timestamp when the

derailment has been detected. If the GNSS_Position of that event is available it shall be

included. If the transport device is in motion, the acquired GNSS_Position may differ from the

position where the derailment has been actually detected.

Access method: Event message

derailmentDetected

 ITSS_TelematicsDeviceID

 ITSS_TransportDeviceID (optional)

 UTCtimestamp – when derailment has been detected

 GNSS_Position (if available)

 ITSS_LocationInfo (optional)

 ITSS_TelematicsApplicationID

JSON schema and example:

Request

HTTP Type POST

MIME Type application/json

Telematics

Application

Customer

System ITSS_Event

© ITSS practice group page 61 of 103

_

Request

Path

https://{customerURI}/itss/1.2/derailmentDetected

BODY:

json Schema

{
 “title”: “derailmentDetected”,
 "$schema": "http://json-schema.org/draft-04/schema#",
 “type”:“object”,
 “properties”:
 {
 “ITSS_TransportDeviceID”: { "type": "string", required:false },
 “ITSS_TelematicsDeviceID”: { "type": "string", required:true },
 “UTCtimestamp”: { “type”: “number”, required: true }
 “GNSS_Position” :
 {
 “type”: “object”, required: false
 "properties":
 {
 "GNSS_UTCtimestamp ": { "type": "number", required:true },
 ”GNSS_Latitude": { "type": "number", required:true },
 "GNSS_Longitude ": { "type": "number", required:true },
 "GNSS_Speed_kmph ": { "type": "number", required:false },
 "GNSS_Heading_deg ": { "type": "number", required:false },
 “GNSS_Altitude “: { “type”: “number”, required:false },
 "GNSS_Accuracy ": { "type": "number", required:false },
 “ITSS_LocationInfo”: { "type": "object", required:false,
 "properties":
 {
 “Location_ZIP”: { "type": "string", required: false },
 “Location_City”: { "type": "string", required: false },
 “Location_Street”: { "type": "string", required: false },
 “Location_Description”: { "type": "string", required: false },
 “Location_Country”: { "type": "string", required: false },
 “Location_UIC_Code”: { "type": "string", required: false },
 “Location_GeoZone”: { "type": "string", required: false }
 }
 }
 },
 “ITSS_TelematicsApplicationID”: { "type": "string", required:true }
 }
}

BODY

example

{
 “ITSS_TransportDeviceID”: “3180 4674 001-1”,
 “ITSS_TelematicsDeviceID”: “MANUF000000751”,
 “UTCtimestamp”: 1436712339.124,
 “GNSS_Position” :
 {

 “GNSS_UTCtimestamp”: 1436712345.154,
 “GNSS_Latitude”: 52.264304,
 “GNSS_Longitude”: 10.525537,
 “GNSS_Speed_kmph”: 48.87,
 “GNSS_Heading_deg”: 350.1,

 “ITSS_LocationInfo”: {
 “Location_ZIP”: 38126,
 “Location_City”: “Braunschweig”,
 “Location_Street“: “Berliner Platz”,
 “Location_Description": “Braunschweig Hbf”,
 “Location_Country”: “Germany”,
 “Location_UIC_Code”: “051”,
 “Location_GeoZone”: “DE”
 }

© ITSS practice group page 62 of 103

_

 },
 “ITSS_TelematicsApplicationID”: “TeleApp0815”
}

Response on success

HTTP Status 201

MIME Type Text plain

Response on undefined error

HTTP Status All other HTTP Status codes

MIME Type text/plain

BODY: {error description}

© ITSS practice group page 63 of 103

_

Notification of a detected shock

1. Description

The customer expects to be informed about a shock that has been detected by the telematics

device which is installed at the transport device. The detected shock occurred to the transport

device as well as to the transported freight. As a shock above a certain level may result in

damage to freight and / or transport device, the occurrence has to be signalled to the customer

system.

For commercial reason, it is necessary to get the amplitude of the detected shock as well as the

location where it occurred.

2. Method (Event based notification)

The telematics application sends an event notification containing the timestamp when the shock

has been detected. If the GNSS_Position of that event is available it shall be included. If the

transport device is in motion, the acquired GNSS_Position may differ from the position where

the shock has been actually detected.

Access Method: Event message

shockDetected

 ITSS_TelematicsDeviceID

 ITSS_TransportDeviceID (optional)

 UTCtimestamp

 GNSS_Position – after the shock has been detected (if available)

 ITSS_LocationInfo (optional)

 X-Axis_triggered: boolean (true, if axis triggered the shock detection)

 Y-Axis_triggered: boolean (true, if axis triggered the shock detection)

 Z-Axis_triggered: boolean (true, if axis triggered the shock detection)

 X-Axis: number in milli g (g = 9.81 m / s²)

 Y-Axis: number in milli g (g = 9.81 m / s²)

 Z-Axis: number in milli g (g = 9.81 m / s²)

 ITSS_TelematicsApplicationID

Telematics

Application

Customer

System

ITSS_Event

© ITSS practice group page 64 of 103

_

Remark: If the transport device is a railway wagon, then the reference for all axes is defined

according to the wagon coordinate system in “Diagram 2: wagon coordinate system”

JSON schema and example:

Request

HTTP Type POST

MIME Type application/json

Request

Path

https://{customerURI}/itss/1.2/shockDetected

BODY:

json Schema

{
 “title”: “shockDetected”,
 "$schema": "http://json-schema.org/draft-04/schema#",
 “type”: “object”,
 “properties”:
 {
 “ITSS_TransportDeviceID”: { "type": "string", required:false },
 “ITSS_TelematicsDeviceID”: { "type": "string", required:true },
 “UTCtimestamp”: { “type”: “number”, required: true }
 “GNSS_Position” :
 {
 “type”: “object”, required: false
 "properties":
 {
 "GNSS_UTCtimestamp ": { "type": "number", required:true },
 ”GNSS_Latitude": { "type": "number", required:true },
 "GNSS_Longitude ": { "type": "number", required:true },
 "GNSS_Speed_kmph ": { "type": "number", required:false },
 "GNSS_Heading_deg ": { "type": "number", required:false },
 “GNSS_Altitude “: { “type”: “number”, required:false },
 "GNSS_Accuracy ": { "type": "number", required:false },
 “ITSS_LocationInfo”: { "type": "object", required:false,
 "properties":
 {
 “Location_ZIP”: { "type": "string", required: false },
 “Location_City”: { "type": "string", required: false },
 “Location_Street”: { "type": "string", required: false },
 “Location_Description”: { "type": "string", required: false },
 “Location_Country”: { "type": "string", required: false },
 “Location_UIC_Code”: { "type": "string", required: false },
 “Location_GeoZone”: { "type": "string", required: false }
 }
 }
 },
 “X-Axis_triggered”: { "type": "boolean", required: true }
 “Y-Axis_triggered”: { "type": "boolean", required: true }
 “Z-Axis_triggered”: { "type": "boolean", required: true }
 “X-Axis”: { "type": "number", required: true }
 “Y-Axis”: { "type": "number", required: true }
 “Z-Axis”: { "type": "number", required: true }
 “ITSS_TelematicsApplicationID”: { "type": "string", required:true }
 }
}

© ITSS practice group page 65 of 103

_

BODY

example

{
 “ITSS_TransportDeviceID”: “3180 4674 001-1”,
 “ITSS_TelematicsDeviceID”: “MANUF000000751”,
 “UTCtimestamp”: 1436712339.124,
 “GNSS_Position” :
 {

 “GNSS_UTCtimestamp”: 1436712345.154,
 “GNSS_Latitude”: 52.264304,
 “GNSS_Longitude”: 10.525537,
 “GNSS_Speed_kmph”: 48.87,
 “GNSS_Heading_deg”: 350.1,

 “ITSS_LocationInfo”: {
 “Location_ZIP”: 38126,
 “Location_City”: “Braunschweig”,
 “Location_Street“: “Berliner Platz”,
 “Location_Description": “Braunschweig Hbf”,
 “Location_Country”: “Germany”,
 “Location_UIC_Code”: “051”,
 “Location_GeoZone”: “DE”
 }
 },
 “X-Axis_triggered”: true,
 “Y-Axis_triggered”: false,
 “Z-Axis_triggered”: false,
 “X-Axis”: 2600,
 “Y-Axis”: 100,
 “Z-Axis”: 100,
 “ITSS_TelematicsApplicationID”: “TeleApp0815”
}

Response on success

HTTP Status 201

MIME Type Text plain

Response on undefined error

HTTP Status All other HTTP Status codes

MIME Type text/plain

BODY: {error description}

© ITSS practice group page 66 of 103

_

Geofence Create

1. Description of the use case

The customer system wants to create new geofences in the telematics application geofence

repository for an ITSS_CustomerSystemID.

2. Method (Request)

The customer system requests to create new geofences. These geofences will be added to

potentially existing geofences. There will be no implicit delete of existing geofences.

Each geofence has an identifier that is unique among all geofences of a customer and a name

(can be used for displaying). The attempt of creating an existing geofence will return an error.

Every error leads to a rejecting of the whole list; hence no geofence will be created.

The list contains one or more elements. If the list is empty, GeofenceCreate returns an error.

This specification defines three types of geofences: circles, polygons and lines.

1. Circles are defined by a point specified by longitude and latitude and a radius in meters.

Positions with a distance to the given point below this radius are regarded as inside the

geofence.

2. Polygons are defined by an array of three or more (up to 32) points (latitude and

longitude). Polygons need not be convex but may also be concave, but they must not be

overturned. Positions within the polygon are regarded as inside the geofence.

3. Lines are defined by an array of two or more points (latitude and longitude) and the

maximum normal distance from this line. All positions with a normal distance to that line

below this threshold are regarded as inside the geofence.

The geofence functions “circles” and “polygons” must be supported by the telematics system.

The geofence function “lines” can be supported by the telematics system.

© ITSS practice group page 67 of 103

_

The following definitions are generally used within ITSS geofence methods:

 "definitions":
 {
 "ITSS_GeoPoint":
 {
 "type": "object",
 "properties":
 {
 "Longitude": { "type": "number" },
 "Latitude": { "type": "number" }
 },
 "required": ["Latitude", "Longitude"]
 },
 "ITSS_GeoLine":
 {
 "type": "object",
 "properties":
 {
 "Line":
 {
 "type": "array",
 "minItems": 2,
 "items": { "$ref": "#/definitions/ITSS_GeoPoint" }
 },
 "Distance": { "type": "number" }
 },
 "required": ["Line", "Distance"]
 },
 "ITSS_GeoCircle":
 {
 "type": "object",
 "properties":
 {
 "Center": { "$ref": "#/definitions/ITSS_GeoPoint" },
 "Radius": { "type": "number" }
 },
 "required": ["Center", "Radius"]
 },
 "ITSS_GeoPolygon":
 {
 "type": "object",
 "properties":
 {
 "Polygon":
 {
 "type": "array",
 "minItems": 3,
 "items": { "$ref": "#/definitions/ITSS_GeoPoint" }
 }
 },
 "required": ["Polygon"]
 }
 }

 "definitions":
 {
 "DeviceID":
 {
 "oneOf":
 [

© ITSS practice group page 68 of 103

_

 { "ITSS_TransportDeviceID": { "type": "string" },
 { "ITSS_TelematicsDeviceID": { "type": "string" }
],
 "required": true
 },
 “ITSS_GeofenceIDList”:
 {
 "type": "array", required: true,
 "items":
 [{

 "GeofenceID": { "type": "string", required: true }

}]

 }
 }

geofenceCreate

 ITSS_CustomerSystemID

 GeofenceList

JSON schema and example for a request

Request

HTTP Type POST

MIME Type application/json

Request

Path

https://telematik.xyz.com/itss/1.2/geofenceCreate

BODY:

json Schema

{
 "title": "geofenceCreate",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties":
 {
 “ITSS_CustomerSystemID”: { "type": "string", required: true },
 "GeofenceList":
 [{
 "type": "array",
 "items":
 {
 "ITSS_GeofenceDef"
 {
 "type": "object", required: true,
 "properties":
 {

ITSS_Request Telematics

Application

Customer

System

https://telematik.xyz.com/itss/1.2/geofenceCreate

© ITSS practice group page 69 of 103

_

 "GeofenceID": { "type": "string", required: true },
 "GeofenceName": { "type": "string", required: false },
 "ITSS_GeofenceEvent": { "type": "string", "required": false }
 }
 },
 "GeoObject":
 {
 "anyOf":
 [
 { "$ref": "#/definitions/ITSS_GeoCircle" },
 { "$ref": "#/definitions/ITSS_GeoLine" },
 { "$ref": "#/definitions/ITSS_GeoPolygon" }
],
 "required": true
 }
 }
 }]
 }
}

BODY:

example

{
 “ITSS_CustomerSystemID”: ”CUSTSYS001”,
 "GeofenceList":
 [{
 “ITSS_GeofenceDef”:
 {
 "GeofenceID": "123456788",
 "GeofenceName": "Very important Circle",
 “ITSS_GeofenceEvent”: “on_both”
 },
 "GeoObject":
 {
 "Circle": { "Longitude": 16.300, "Latitude": 48.300 },
 "Radius": 200
 },
 }, {
 " ITSS_GeofenceDef ":
 {
 "GeofenceID": "123456799",
 "GeofenceName": "Important Circle",
 “ITSS_GeofenceEvent”: “on_enter”
 },
 “GeoObject":
 {
 "Circle": { "Longitude": 16.322, "Latitude": 49.300 },
 "Radius": 130
 }
 }]
}

Response on success

HTTP Status 200

MIME Type Text plain

BODY:

empty

Response on request error

HTTP Status 400

© ITSS practice group page 70 of 103

_

MIME Type application/json

BODY: JSON formatted error description see section Error concept

Response on undefined error

HTTP Status All other HTTP Status codes

MIME Type text/plain

BODY: {error description}

© ITSS practice group page 71 of 103

_

Geofence Update

1. Description

The customer system wants to update a list of already defined geofences in the telematics

application geofence repository for an ITSS_CustomerSystemID.

2. Method (Request)

The customer system requests to update a list of existing definitions of geofences.

There will be no implicit creation of non-existing geofences.

Every geofence has an identifier that is unique among all geofences of a customer and is used

to identify the geofence that has to be updated. The updating of not existing geofences will

return an error. In case of an error the whole list will be rejected.

Access Method: Synchronous

geofenceUpdate

 ITSS_CustomerSystemID

 GeofenceList

JSON schema and example for a request

Request

HTTP Type POST

MIME Type application/json

Request

Path

https://telematik.xyz.com/itss/1.2/geofenceUpdate

BODY:

json Schema

{
 "title": "geofenceUpdate",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties":
 {
 “ITSS_CustomerSystemID”: { "type": "string", required: true },
 "GeofenceList":
 [{
 "type": "array",
 "items":
 {

ITSS_Request Telematics

Application

Customer

System

https://telematik.xyz.com/itss/1.2/geofenceUpdate

© ITSS practice group page 72 of 103

_

 "ITSS_GeofenceDef"
 {
 "type": "object", required: true,
 "properties":
 {
 "GeofenceID": { "type": "string", required: true },
 "GeofenceName": { "type": "string", required: false },
 "ITSS_GeofenceEvent": { "type": "string", "required": false }
 }
 },
 "GeoObject":
 {
 "anyOf":
 [
 { "$ref": "#/definitions/ITSS_GeoCircle" },
 { "$ref": "#/definitions/ITSS_GeoLine" },
 { "$ref": "#/definitions/ITSS_GeoPolygon" }
],
 "required": true
 }
 }
 }
 }]
}

BODY:

example

{
 “ITSS_CustomerSystemID”: ”CUSTSYS001”,
 "GeofenceList":
 [{
 “ITSS_GeofenceDef”:
 {
 "GeofenceID": "123456788",
 "GeofenceName": "Very important Circle",
 “ITSS_GeofenceEvent”: “on_both”
 },
 "GeoObject":
 {
 "Circle": { "Longitude": 16.300, "Latitude": 48.300 },
 "Radius": 200
 },
 }, {
 " ITSS_GeofenceDef ":
 {
 "GeofenceID": "123456799",
 "GeofenceName": "Important Circle",
 “ITSS_GeofenceEvent”: “on_enter”
 },
 "GeoObject":
 {
 "Circle": { "Longitude": 16.322, "Latitude": 49.300 },
 "Radius": 130
 }
 }]
}

© ITSS practice group page 73 of 103

_

Response on success

HTTP Status 200

MIME Type Text plain

BODY:

empty

Response on request error

HTTP Status 400

MIME Type application/json

BODY: JSON formatted error description see section Error concept

Response on undefined error

HTTP Status All other HTTP Status codes

MIME Type text/plain

BODY: {error description}

Geofence Read

1. Description

The customer system wants to read the definition of a set of geofences for an

ITSS_CustomerSystemID.

2. Method (Request)

The customer system requests the geographic definition of a list of geofences.

Every geofence has an identifier that is unique among all geofences of a customer.

Access Method: Synchronous

ITSS_Request Telematics

Application

Customer

System

Telematics

Application

Customer

System
ITSS_Response

© ITSS practice group page 74 of 103

_

geofenceRead

 ITSS_CustomerSystemID

 ITSS_GeofenceIDList

geofenceReadResponse

 geofenceList

JSON schema and example for a request

Request

HTTP Type POST

MIME Type text/plain

Request

Path

https://telematik.xyz.com/itss/1.2/geofenceRead

BODY:

json schema

{
 "title": "geofenceRead",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties":
 {
 “ITSS_CustomerSystemID”: { "type": "string", required: true },
 “ITSS_GeofenceIDList”: { "$ref": "#/definitions/ITSS_GeofenceIDList",
 "required": true }
 }

BODY:

example

{
 “ITSS_CustomerSystemID”: ”CUSTSYS001”,
 “ITSS_GeofenceIDList”:
 [{
 "GeofenceID": “123456788”
 },
 {
 “GeofenceID”: “123455558”
 }]
}

Response on success

HTTP Status 200

MIME Type Text plain

BODY:

schema

{
 "title": "geofenceRead",
 "$schema": "http://json-schema.org/draft-04/schema#",

"type": "object",
"properties":
{

 "GeofenceList":
 [{
 "type": "array",
 "items":
 {
 "ITSS_GeofenceDef"
 {
 "type": "object", required: true,

© ITSS practice group page 75 of 103

_

 "properties":
 {
 "GeofenceID": { "type": "string", required: true },
 "GeofenceName": { "type": "string", required: false },
 "ITSS_GeofenceEvent": { "type": "string", "required": false }
 }
 },
 "GeoObject":
 {
 "anyOf":
 [
 { "$ref": "#/definitions/ITSS_GeoCircle" },
 { "$ref": "#/definitions/ITSS_GeoLine" },
 { "$ref": "#/definitions/ITSS_GeoPolygon" }
],
 "required": true
 }
 }
 }]
 }
}

BODY:

example

{
 "GeofenceList":
 [{
 “ITSS_GeofenceDef”:
 {
 "GeofenceID": "123456788",
 "GeofenceName": "Very important Circle",
 “ITSS_GeofenceEvent”: “on_both”
 },
 "GeoObject":
 {
 "Circle": { "Longitude": 16.300, "Latitude": 48.300 },
 "Radius": 200
 },
 " ITSS_GeofenceDef ":
 {
 "GeofenceID": "123455558",
 "GeofenceName": "Important Circle",
 “ITSS_GeofenceEvent”: “on_enter”
 },
 "GeoObject":
 {
 "Circle": { "Longitude": 16.322, "Latitude": 49.300 },
 "Radius": 130
 }
 }]
}

Response on request error

HTTP Status 400

MIME Type application/json

BODY: JSON formatted error description see section Error concept

Response on undefined error

HTTP Status All other HTTP Status codes

MIME Type text/plain

© ITSS practice group page 76 of 103

_

BODY: {error description}

© ITSS practice group page 77 of 103

_

Geofence Delete

1. Description

The customer system wants to delete a set of geofences from the telematics application

geofence repository for an ITSS_CustomerSystemID.

Deleting a geofence will automatically delete all assignments to any telematic device of this

geofence.

2. Method (Request)

The customer system requests deletion of a list of geofence definitions .

Every geofence has an identifier that is unique among all geofences of a customer and is used

to identify the geofences that have to be deleted. Non existing geofences will be ignored.

Access Method: Synchronous

geofenceDelete

 ITSS_CustomerSystemID

 ITSS_GeofenceIDList

JSON schema and example for a deletion request

Request

HTTP Type POST

MIME Type text/plain

Request

Path

https://telematik.xyz.com/itss/1.2/geofenceDelete

BODY:

json schema

{
 "title": "geofenceDelete”,
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",

ITSS_Request Telematics

Application

Customer

System

Telematics

Application

Customer

System
ITSS_Response

https://telematik.xyz.com/itss/1.2/geofenceDelete

© ITSS practice group page 78 of 103

_

 "properties":
 {
 “ITSS_CustomerSystemID”: { "type": "string", required: true },
 “ITSS_GeofenceIDList”: { "$ref": "#/definitions/ITSS_GeofenceIDList",
 "required": true }
 }
}

BODY:

example

{
 “ITSS_CustomerSystemID”: ”CUSTSYS001”,
 “ITSS_GeofenceIDList”:
 [{
 "GeofenceID": “123456788”
 },
 {
 “GeofenceID”: “123455558”
 }]
}

Response on success

HTTP Status 200

MIME Type Text plain

BODY:

empty

Response on request error

HTTP Status 400

MIME Type application/json

BODY: JSON formatted error description see section Error concept

Response on undefined error

HTTP Status All other HTTP Status codes

MIME Type text/plain

BODY: {error description}

© ITSS practice group page 79 of 103

_

Geofence Read All

1. Description

The customer system wants to get the definition of all geofences of the

ITSS_CustomerSystemID.

2. Method (Request)

The customer system requests all geofences.

Access Method: Synchronous

geofenceReadAll

 ITSS_CustomerSystemID

geofenceReadAllResponse

 geofenceList

JSON schema and example for a request

Request

HTTP Type GET

MIME Type text/plain

Request

Path

https://telematik.xyz.com/itss/1.2/geofenceReadAll?ITSS_CustomerSystemID={custId}

BODY:

empty

Response on success

HTTP Status 200

ITSS_Request Telematics

Application

Customer

System

Telematics

Application

Customer

System
ITSS_Response

© ITSS practice group page 80 of 103

_

MIME Type Text plain

BODY:

schema

{
 "title": "geofenceReadAll",
 "$schema": "http://json-schema.org/draft-04/schema#",

"type": "object",
"properties":
{

 "GeofenceList":
 [{
 "type": "array",
 "items":
 {
 "ITSS_GeofenceDef"
 {
 "type": "object", required: true,
 "properties":
 {
 "GeofenceID": { "type": "string", required: true },
 "GeofenceName": { "type": "string", required: false },
 "ITSS_GeofenceEvent": { "type": "string", "required": false }
 }
 },
 "GeoObject":
 {
 "anyOf":
 [
 { "$ref": "#/definitions/ITSS_GeoCircle" },
 { "$ref": "#/definitions/ITSS_GeoLine" },
 { "$ref": "#/definitions/ITSS_GeoPolygon" }
],
 "required": true
 }
 }
 }]
 }

}

BODY:

example

{
 "GeofenceList":
 [{
 “ITSS_GeofenceDef”:
 {
 "GeofenceID": "123456788",
 "GeofenceName": "Very important Circle",
 “ITSS_GeofenceEvent”: “on_both”
 },
 "GeoObject":
 {
 "Circle": { "Longitude": 16.300, "Latitude": 48.300 },
 "Radius": 200
 },
 }, {
 " ITSS_GeofenceDef ":
 {
 "GeofenceID": "123455558",
 "GeofenceName": "Important Circle",
 “ITSS_GeofenceEvent”: “on_enter”
 },
 "GeoObject":
 {
 "Circle": { "Longitude": 16.322, "Latitude": 49.300 },

© ITSS practice group page 81 of 103

_

 "Radius": 130
 }
 }]
}

Response on request error

HTTP Status 400

MIME Type application/json

BODY: JSON formatted error description see section Error concept

Response on undefined error

HTTP Status All other HTTP Status codes

MIME Type text/plain

BODY: {error description}

© ITSS practice group page 82 of 103

_

Geofence Delete All

Description of the use case

The customer wants to delete all geofences for an ITSS_CustomerSystemID.

Method (Request)

The customer system requests to delete all geofences.

deleteGeofenceAll

 ITSS_CustomerSystemID

JSON schema and example for a request

Request

HTTP Type GET

MIME Type text/plain

Request

Path

https://telematik.xyz.com/itss/1.2/geofenceDeleteAll

BODY:

empty

Response on success

HTTP Status 200

MIME Type Text plain

BODY:

empty

Response on request error

HTTP Status 400

MIME Type application/json

BODY: JSON formatted error description see section Error concept

Response on undefined error

HTTP Status All other HTTP Status codes

MIME Type text/plain

BODY: {error description}

© ITSS practice group page 83 of 103

_

Geofence Create Assignment

1. Description of the use case

The customer system wants to assign geofences from the telematics application geofence

repository to a telematics device or transport device.

2. Method (Request)

The customer system requests to assign geofences to a single telematics device. These

geofences will be added to potentially assigned geofences. There will be no implicit removal of

assigned geofences.

Each geofence has an identifier that is unique among all geofences of a customer. The attempt

of assign a not existing geofence will return an error. Every error results in rejecting the whole

list; hence no geofence will be assigned.

The list contains one or more elements. If the list is empty, GeofenceCreateAssignment returns

an error.

With successful assignment of the geofence, event notifications are automatically activated (if

such an event is defined).

The following definitions are generally used within ITSS geofence methods:

geofenceCreateAssignment

 ITSS_CustomerSystemID

 ITSS_TelematicsDeviceID or ITSS_TransportDeviceID

 ITSS_GeofenceIDList

JSON schema and example for a request

Request

HTTP Type POST

ITSS_Request Telematics

Application

Customer

System

© ITSS practice group page 84 of 103

_

MIME Type application/json

Request

Path

https://telematik.xyz.com/itss/1.2/geofenceCreateAssignment

BODY:

json Schema

{
 "title": "geofenceCreateAssignment",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties":
 {
 “ITSS_CustomerSystemID”: { "type": "string", required: true },
 "DeviceID": { "$ref": "#/definitions/DeviceID", "required": true },
 ITSS_GeofenceIDList”: { "$ref": "#/definitions/ITSS_GeofenceIDList",

 "required": true }

 }
}

BODY:

example

{
 “ITSS_CustomerSystemID”: ”CUSTSYS001”,
 “ITSS_TelematicsDeviceID”: ” MANUF000000751”,
 "ITSS_GeofenceIDList":
 [{
 "GeofenceID": "123456788"
 }, {
 "GeofenceID": "123456789"
 }]
}

Response on success

HTTP Status 200

MIME Type Text plain

BODY:

empty

Response on request error

HTTP Status 400

MIME Type application/json

BODY: JSON formatted error description see section Error concept

Response on undefined error

HTTP Status All other HTTP Status codes

MIME Type text/plain

BODY: {error description}

https://telematik.xyz.com/itss/1.2/geofenceCreateAssignment

© ITSS practice group page 85 of 103

_

Geofence Read Assignments

1. Description

The customer system wants to read all the geofences assigned to a telematics device or

transport device.

2. Method (Request)

The customer system requests the assignments of a list of geofences to a single telematics or

transport device.

Every geofence has an identifier that is unique among all geofences of a customer.

Access Method: Synchronous

geofenceReadAssignment

 ITSS_TelematicsDeviceID or ITSS_TransportDeviceID

 ITSS_CustomerSystemID

geofenceReadAssignmentResponse

 ITSS_TelematicsDeviceID

 ITSS_TransportDeviceID (optional)

 ITSS_GeofenceIDList

JSON schema and example for a request

Request

HTTP Type POST

MIME Type text/plain

Request

Path

https://telematik.xyz.com/itss/1.2/geofenceReadAssignment

ITSS_Request Telematics

Application

Customer

System

Telematics

Application

Customer

System
ITSS_Response

© ITSS practice group page 86 of 103

_

BODY:

json schema

{
 "title": "geofenceReadAssignment",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties":
 {
 “ITSS_CustomerSystemID”: { "type": "string", required: true },
 "DeviceID": { "$ref": "#/definitions/DeviceID", "required": true }
 }
}

BODY:

example

{
 “ITSS_CustomerSystemID”: ”CUSTSYS001”,
 “ITSS_TelematicsDeviceID”: ” MANUF000000751”
}

Response on success

HTTP Status 200

MIME Type Text plain

BODY:

schema

{
 "title": "geofenceRead",
 "$schema": "http://json-schema.org/draft-04/schema#",

"type": "object",
"properties":
{

 “ITSS_TransportDeviceID”: { "type": "string", required:false },
 “ITSS_TelematicsDeviceID”: { "type": "string", required:true },
 ITSS_GeofenceIDList”: { "$ref": "#/definitions/ITSS_GeofenceIDList",

 "required": true }

 }
}

BODY:

example

{
 “ITSS_TelematicsDeviceID”:” MANUF000000751”,
 "ITSS_GeofenceIDList":
 [{
 "GeofenceID": "123456788"
 }, {
 "GeofenceID": "123456789"
 }]
}

Response on request error

HTTP Status 400

MIME Type application/json

BODY: JSON formatted error description see section Error concept

Response on undefined error

HTTP Status All other HTTP Status codes

MIME Type text/plain

BODY: {error description}

© ITSS practice group page 87 of 103

_

Geofence Delete Assignment

1. Description of the use case

The customer system wants to delete the assignment of one or more geofences to a telematics

device or transport device.

2. Method (Request)

The customer system requests to delete the assignment of geofences to a single telematics

device. These geofences will be removed from the assignment.

Each geofence has an identifier that is unique among all geofences of a customer. The attempt

of unassigning a not existing geofence will return an error. Every error leads to a rejection of the

whole list; hence no assignments will be deleted.

The list contains one or more elements. If the list is empty, GeofenceDeleteAssignment returns

an error.

With successful removal from the assignment of the geofence, event notifications are

automatically deactivated for this geofence on this device.

© ITSS practice group page 88 of 103

_

geofenceDeleteAssignment

 ITSS_CustomerSystemID

 ITSS_TelematicsDeviceID or ITSS_TransportDeviceID

 ITSS_GeofenceIDList

JSON schema and example for a request

Request

HTTP Type POST

MIME Type application/json

Request

Path

https://telematik.xyz.com/itss/1.2/geofenceDeleteAssignment

BODY:

json Schema

{
 "title": "geofenceDeleteAssignment",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties":
 {
 “ITSS_CustomerSystemID”: { "type": "string", required: true },
 "DeviceID": { "$ref": "#/definitions/DeviceID", "required": true },
 ITSS_GeofenceIDList”: { "$ref": "#/definitions/ITSS_GeofenceIDList",

 "required": true }

 }
}

BODY:

example

{
 “ITSS_CustomerSystemID”: ”CUSTSYS001”,
 “ITSS_TelematicsDeviceID”: ” MANUF000000751”,
 "ITSS_GeofenceIDList":
 [{
 "GeofenceID": "123456788"
 }, {
 "GeofenceID": "123456789"
 }]
}

Response on success

HTTP Status 200

MIME Type Text plain

BODY:

empty

ITSS_Request Telematics

Application

Customer

System

https://telematik.xyz.com/itss/1.2/geofenceDeleteAssignment

© ITSS practice group page 89 of 103

_

Response on request error

HTTP Status 400

MIME Type application/json

BODY: JSON formatted error description see section Error concept

Response on undefined error

HTTP Status All other HTTP Status codes

MIME Type text/plain

BODY: {error description}

Geofence Delete All Assignments

Description of the use case

The customer wants to delete all assignments of geofences assigned to a telematics device or

transport device.

Method (Request)

The customer system requests to delete the assignments of all geofences of a single device.

geofenceDeleteAllAssignments

 ITSS_TelematicsDeviceID or ITSS_TransportDeviceID

 ITSS_CustomerSystemID

JSON schema and example for a request

Request

HTTP Type GET

MIME Type text/plain

Request

Path

https://telematik.xyz.com/itss/1.2/geofenceDeleteAllAssingments?ITSS_TransportDeviceI

D={deviceId}&ITSS_CustomerSystemID={custId}

or

https://telematik.xyz.com/itss/1.2/geofenceDeleteAllAssingments?ITSS_TelematicsDevice

ID={deviceId}&ITSS_CustomerSystemID={custId}

BODY:

empty

Response on success

HTTP Status 200

MIME Type Text plain

© ITSS practice group page 90 of 103

_

BODY:

empty

Response on request error

HTTP Status 400

MIME Type application/json

BODY: JSON formatted error description see section Error concept

Response on undefined error

HTTP Status All other HTTP Status codes

MIME Type text/plain

BODY: {error description}

© ITSS practice group page 91 of 103

_

Webservice Technology

The REST specification provides a standard way for web clients to communicate with servers

through REpresentational State Transfer (REST) technology.

REST supports optional parameter (unlike SOAP). It is easy to implement and widespread.

Optional parameters that are not supplied by the system are simply left out in the response.

The client issues text-based JSON requests to the server through structured URLs.

The server responds with a text-based reply in JSON format that complies to the request.

Both communication parties must provide a web service that complies with the specification.

Webservice methods and invocation

The following section describes the web service methods provided by the interface between the

telematics application and the customer system.

 The interface uses JSON over HTTP for data communication (see http://www.json.org).

 All web service methods in the interface are callable (according to REST) via an URI plus

method name and additional parameters

http://telematik.xyz.com/itss/<x>.<y>/<request>?<key>=<value>&<key>=<value>

 The following HTTP headers are mandatory based on the method:

o For GET requests: none

o For POST requests: Content-Type: application/json

 If invocation of the web service is successful the following responses can be expected

based on the method:

o For GET requests: HTTP status 200 is returned. The response body contains the

expected JSON object as described above.

o For POST requests: HTTP status 201 is returned. The response body will be

empty and can be ignored.

 If invocation of the web service is not successful but the web service is able to respond,

then status 400 is returned. The response body contains a JSON object with an detailed

error description according to the section Error concept.

 If the web service does not respond or if it returns status code 503 (“Service unavailable”)

the client should retry after a waiting period (e.g. ten minutes).

http://telematik.xyz.com/itss

© ITSS practice group page 92 of 103

_

Data security

The interface between the telematics application and the customer system supports just one

access right. Restrictions on objects and data (the role and right management) have to be

implemented solely in the customer’s system.

In order to protect against not authorized access, every message between the communication

parties has to be authenticated by using system-ID and HTTP basic authentication.

In order to protect the telematics application against wrong accesses of valid customers, the

system ID is the unique identifier of a specific customer system.

To prevent third parties from eavesdropping, only SSL/TLS secured communication will be

allowed.

Error concept

This chapter describes the error handling and returned error codes and messages. All errors

and messages are generated by the telematics application.

As multiple fields of data are included in one API request a HTTP response code is not

sufficient anymore to clearly represent the status of the request. Therefore, the error concept

knows two levels of errors. The first level is HTTP based and addresses general errors like

‘Server Down’, or ‘Resource Not Found’ via the standard HTTP error codes. Those codes are

described for each API request directly at the request description.

The second error level handles problems in the context of a request itself, that is, the request is

received by the telematics application but cannot be executed due to for example parameter

errors. This condition is generally indicated by an HTTP error code of 403 as described in the

API request descriptions.

If the parameter validation of one parameter fails, the telematics application continues to

process all other parameters before an error is returned. For each error an error code and an

error description is returned. The request is not executed and no data from the request is stored

by the telematics application.

All errors are returned with a single general error code and include a detailed error code that

provides additional information, e.g. a field breakdown. This additional error field provides

detailed error information for every failed parameter:

© ITSS practice group page 93 of 103

_

Important hint: all error responses MUST contain detailed error information with one exception

- in case of an authentication failure (error code 0100) the detailed information should not be

provided.

The details of the error are specified in a JSON object, see below:

Possible Error JSON response format

General error {

 "code" : 1234,

 "message" : "Something bad happened"

}

Detailed error {

 "code" : 101,

 "message" : "Parameter validation failed",

 "errors" : [

 {

 "code" : 5432,

 "message" : "The format of the id is wrong"

 },

 {

 "code" : 5622,

 "message" : "The requested time is unknown"

 }

]

}

The following section lists all possible general error codes:

Error

code

Message Description

0100 Authentication failed. The customer system could not be authenticated by

the telematics application. The errors array might

contain additional information.

Hint: although the standard allows adding additional

information to this error message consider the

security problems raised by returning detailed

authorization failure information.

0101 Parameter validation failed. The parameter check for one or many parameters of

the request failed. The errors array must contain

additional information.

The following section lists all possible detailed error codes:

© ITSS practice group page 94 of 103

_

Error

code

Message Description

1001 The given system ID could not be

found

The telematics application does not know the

system ID provided.

1002 The system ID is missing The customer system did not provide a system

ID.

2001 The ITSS_TelematicsDeviceID

could not be found

The requested telematics device is not known to

the telematics application.

2002 The ITSS_TelematicsDeviceID

format is not specification

compliant

The format of the provided telematics device ID

does not follow the rules of the specification.

2003 The ITSS_TransportDeviceID

could not be found

The requested transport device is not known to

the telematics application.

2004 The ITSS_TransportDeviceID

format is not specification

compliant

The format of the provided transport device ID

does not follow the rules of the specification.

2005 The ITSS_TelematicsDeviceID

and the ITSS_TransportDeviceID

are not paired.

In case the customer system provides both IDs

within a request and the telematics application

knows the device pairing, the pairing is checked

and an error returned if the pairing is not

identical.

2006 The From_UTCtimestamp is

invalid.

Either the format or the time stated by the time

stamp is incorrect, e.g. time stamp smaller 0.

2007 The To_UTCtimestamp is invalid. Either the format or the time stated by the time

stamp is incorrect, e.g. time stamp smaller 0.

2008 The time interval between

From_UTCtimestamp and

To_UTCtimestamp is invalid.

The time interval between the two timestamps

cannot be applied by the telematics application,

e.g. is negative, that is, the To_UTCtimestamp

is smaller than the From_UTCtimestamp.

2009 The parameter

ITSS_TelematicsDeviceID is

missing.

The customer system did not provide an

ITSS_TelematicsDeviceID.

2010 The parameter

ITSS_TransportDeviceID is

missing.

The customer system did not provide an

ITSS_TransportDeviceID.

2011 The parameter

From_UTCtimestamp is missing.

The customer system did not provide a

From_UTCtimestamp.

© ITSS practice group page 95 of 103

_

2012 The parameter

To_UTCtimestamp is missing.

The customer system did not provide a

To_UTCtimestamp.

2013 One of the parameters is not

supported.

The customer system sent a parameter which is

not supported by the telematics application.

3001 The response contains too much

data and cannot be processed by

the telematics application.

The request generated so much data that the

telematics application reaches internal capacity

limits.

© ITSS practice group page 96 of 103

_

Abbreviations

The following table contains the descriptions of the abbreviations used in this document

Abbreviation Description

DIUM DIUM - Uniform distance table for international freight traffic: List

of railway stations - List of handover/delivery points used by the

railways

GNSS Global Navigation Satellite System; e.g.: GPS-NAVSTAR;

GLONASS, Galileo, BeiDou …

ITSS ITSS stands for „Industrieplattform Telematik und Sensorik im

Schienengüterverkehr“; which describes a practice group defining

standards related to telematics and sensorics in railway business

TIS TIS stands for “Technischer Innovationskreis

Schienengüterverkehr“; a group discussing and creating

innovations related to railway business

TLS Transport Layer Security; successor of SSL, used to provide

communications security.

UTC Universal time coordinated; is often used as time / date reference

system in computer systems.

VPN Virtual Private Network; is used to securely extend a private

network across the internet. Remote computers (and services)

appear as if they were part of the private network.

WGS 84 World Geodetic System as of 1984; is often used as reference

system by GNSS systems

API Application Programming Interface, a software interface to

access functions across system/module boundaries.

© ITSS practice group page 97 of 103

_

Glossary:

The following table contains the terms used in this document

Term Description

ITSS_ManufacturerID ID of manufacturer as provided by the ITSS practice

group upon request.

5 digits of printable ASCII codes from ‘0’ to ‘9’ and from

‘A’ to ‘Z’

The ITSS_ManufacturerID is defined by the ITSS

practice group.

ITSS_TelematicsDeviceID 20 printable ASCII codes from ‘0’ to ‘9’ and from

‘A’ to ‘Z’ built from ITSS_ManufacturerID (5 digits)

concatenated with manufacturer specific device ID (15

digits)

ITSS_TransportDeviceID UIC wagon number

 Wheelset ID

 GIAI number

 UIC Traction Unit (Locomotives, multiple units, …)

number

 Vehicle ID

 Container ISO number

 Container NonISO (Swap Bodies, ULDs, …) ID

 Generic Object ID

An ITSS_TransportDeviceID is limited to 50 printable

ASCII codes in the range of hexadecimal 0x21 to 0x7E

with the exception of hexadecimal 0x2F, 0x5C, 0x3A,

0x3F, 0x22, 0x3C, 0x3E which is printable

/ \ : * ? “ < > |.

ITSS_LocationInfo Location_ZIP (optional): number

Location_City (optional): string

Location_Street (optional): string

Location_Description (optional): string

Location_Country (optional): string

Location_UIC_Code (optional): string

Location_GeoZone (optional): string

Wagon coordinate system X-axis of railway wagon parallel to the track

Y-axis of railway wagon perpendicular to the track

Z-axis of railway wagon vertical to the track

see “Diagram 2: wagon coordinate system”

ITSS_CustomerSystemID The unique ID of a customer system used in any

request to a telematics application. This ID is validated

by the telematics application to guard against

© ITSS practice group page 98 of 103

_

unauthorized access. See System Architecture

Overview for details on management and generation of

an ITSS_CustomerID.

An ITSS_CustomerID is limited to 20 printable ASCII

codes in the range of hexadecimal 0x21 to 0x7E with

the exception of hexadecimal 0x2F, 0x5C, 0x3A, 0x3F,

0x22, 0x3C, 0x3E which is printable / \ : * ? “ < > |.

An ITSS_CustomerID must not be empty.

ITSS_TelematicsApplicationID The unique ID of a telematics application used in any

response and event delivered to a customer system.

This ID together is validated by the customer system to

guard against unauthorized data reception. See System

Architecture Overview for details on management and

generation of an ITSS_TelematicsApplicationID

An ITSS_TelematicsApplicationID is limited to 20

printable ASCII codes in the range of hexadecimal 0x21

to 0x7E with the exception of hexadecimal 0x2F, 0x5C,

0x3A, 0x3F, 0x22, 0x3C, 0x3E which is printable

 / \ : * ? “ < > |.

An ITSS_TelematicsApplicationID must not be empty.

ITSS_PassPhrase The ITSS_PassPhrase has been removed for the ITSS

Specification starting with version 1.2. Use Basic

Authentication for mandatory security.

GNSS_Position

 GNSS_UTCtimestamp: UTCtimestamp

 GNSS_Latitude: number (WGS84)

 GNSS_Longitude: number (WGS84)

 GNSS_Speed_kmph number

 GNSS_Heading_deg number

 GNSS_Accuracy (optional): number (in meters)

 GNSS_Altitude (optional): number (WGS84)

 ITSS_LocationInfo (optional)

GNSS_PositionList Array of GNSS_Position

UTCtimestamp

Count of seconds since 1970-01-01 00:00 UTC with

fractional part, if available

ITSS_LoadingState

Represents the loading state as case sensitive text.

The defined values are:

 “loaded”

 “unloaded”

 “overloaded”

 “unknown”

© ITSS practice group page 99 of 103

_

ITSS_DeviceList An array of objects with

 ITSS_TelematicsDeviceID

 ITSS_TransportDeviceID

E.g. with ITSS_TransportDeviceID:

[{

 {

 "ITSS_TransportDeviceID" : "1006-SZM5_CA730",

 "ITSS_TelematicsDeviceID" : " MANUF000000751"
 }

}]

E.g. without ITSS_TransportDeviceID:

[{

 {

 "ITSS_TelematicsDeviceID" : " MANUF000000751"
 }

}]

ITSS_SensorValueList Array of ITSS_SensorValue

ITSS_SensorValue An object representing a single sensor measurement

with the following entries:

 SamplingUTCtimestamp: UTCtimestamp

 ITSS_SensorId

 Value: float

 ITSS_SensorType (required)

 ITSS_SensorPosition (required)

 ITSS_SensorTrigger (optional)

Further explanations:

Value is the measured value in float. The unit of the

value is determined from the ITSS_SensorType.

The following is an example for a single measurement

of a pressure sensor mounted at the lid of a tank

wagon:

{

 "SamplingUTCTimestamp": 1436722345.154,

 "Uid": "A0456798BF123456",

 "Value": "1.75",

 "ITSS_SensorType": "pressure",

 "ITSS_SensorPosition": "tank"

}

ITSS_SensorId 20 printable ASCII codes from ‘0’ to ‘9’ and from

‘A’ to ‘Z’ built from ITSS_ManufacturerID (5 digits)

© ITSS practice group page 100 of 103

_

concatenated with manufacturer specific sensor Id (15

digits)

ITSS_SensorType Is the physical measuring type of the sensor:

 “temperature” in kelvin

 “relativeFillLevel” in %

 “relativeHumidity” in %

 “pressure” in pascal

 “distance” in meter

 “speed” in meter per second

 “voltage” in volt

 “current” in ampere

 “power” in watt

 “mass” in kilogram

 “accelerationX” in milli g (g = 9.81 m / s²)1

 “accelerationY” in milli g (g = 9.81 m / s²)1

 “accelerationZ” in milli g (g = 9.81 m / s²)1

 “illuminance” in lux

 “gyroscopeX” in radians per second

 “gyroscopeY” in radians per second

 “gyroscopeZ” in radians per second

 “magnetometerX” in tesla

 “magnetometerY” in tesla

 “magnetometerZ” in tesla

 “inclinationX” in radians

 “inclinationY” in radians

 “inclinationZ” in radians

 “signal” - false: value=0.0, true: value<>0.0

 “custom” – customer specific type, unit not specified

The unit must be used from SI unit system. Additional

sensor types can only be defined and issued by the

ITSS practice group.

1 Milli g is used instead of the SI unit m/s2 to be consistent with the already introduced “Notification of a detected
shock”

© ITSS practice group page 101 of 103

_

ITSS_SensorPosition Defines the mounting location on the waggon (direction

of orientation, designation of components based on DIN

25005, details see diagram 3 below):

 “ambient”

 “axleBearing[1..N][L/R]”, e.g. “axleBearing1R”

 “axleBrakeDisk[1..N][L/M/R]”

 “wheel[1..N][L/R]”

 “wheelset[1..N]”

 “bogie[1..N]”

 “tank[1..N]”

 “mainAir”

 “brakeCylinder[1..N]”

 “weighingValve”

 “brakeLeverEmpty”

 “handbrakeReleased”

 “doorOpen[1..N][L/R]”, e.g. “doorOpen1R”

 “hatchOpen[1..N]”

 “waggon”

 “custom” – customer specific position

ITSS_SensorTrigger Represents the reason why a sensor value has been

read and/or transmitted as a case sensitive text. The

trigger can be time based, e.g. every 5 minutes or event

based, e.g. a valve has been closed or a threshold

value has been reached. The trigger methods can

change for every sensor value, e.g. the status of a

valve is checked on a regular time base and a status

change is reported in the moment of opening/closing of

the valve.

Defined values are:

 “cyclic” (For time based sensor values.)

 “statusChange”

 “threshold” (If a sensor value exceeds a limit. If the

sensor value and limit is checked time based the

threshold trigger takes priority over the cyclic trigger

and the value has to be reported only once)

 “requested” (If the sensor reading has been manually

requested, e.g. from the telematics application.)

ITSS_GeofenceEvent Represents the reason why a geofence notification has

to be created. The content text is case sensitive.

Defined values are:

© ITSS practice group page 102 of 103

_

 “on_enter” (if the transport device enters the

geofence area)

 “on_exit” (if the transport device leaves the geofence

area)

 “on_both” (if the transport device enters or leaves

the geofence area)

Diagram 2: wagon coordinate system

Diagram 3: Rules for representation - Direction of orientation, designation of components

Orientation examples:

1, 2 wheel set

1L, 1R, 2L, 2R axle bearing

1L1, 1L2, 1R1, 1R2, 2L1, 2L2, 2R2, 2R2 wheel set holder

1L, 1R, 2L, 2R door

1LS, 1RS, 2LS, 2RS buffer

4 3 2 1

X

Y

Z

© ITSS practice group page 103 of 103

_

1S, 2S coupling

1LS, 1RS, 2LS, 2RS air cock

1L, 1M, 1R, 2L, 2M, 2R brake disk

Waggon end definition:

 For wagons with hand brake the location of the hand brake defines wagon end 2

 For wagons with compressed-air brake the location of the piston rod of the brake cylinder

defines the wagon end 2.

Change log

New in Version 1.1:

- New request allDevices added to get a list of all known devices

- New request sensorValuesTimeInterval added, to submit sensor data for a defined time

interval

- New concept of push notifications introduced

- 6 push notifications added to support data push for all relevant information available via

the ITSS interface 1

- Enhancement of gnss_position by gnss_altitude and gnss_accuracy

- Loading states “overloaded” and “payload” added

- Notification about a detected overload condition removed, because now included in

general notification of a loading state

- Changed orientation/numbering of axles in diagram 2

- Wagon end and direction of orientation definition added, including diagram 3

- Review of security issues (no changes)

New in Version 1.2:

- The authentication via ITSS_PassPhrase has been removed from all API methods

- For authentication of each HTTP transaction, the method of basic access authentication

with user name and password has been added

- Requests to the API methods can be made either by using ITSS_TransportDeviceID or

ITSS_TelematicsDeviceID

- Reference to TAF TSI added

- Added new post method “Assembled notification”

- ITSS_TransportDeviceID extended to 50 printable ASCII codes (to support GIAI

numbers)

- Added a new chapter about geofencing. Geofence related methods are set up for

creating, reading, updating and deleting of geofences.

- Added UTCtimestamp to “Notification about the mileage” and “Request all known

devices”

